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Chapter 1

Introduction

Galaxies are not randomly distributed in the Universe, they form a ”Cosmic Web” that
shows a specific structure. This Web was formed when gravitational instabilities produced
by primordial density fluctuations grew until they reached a critical density that made
them collapse, forming gravitationally bound dark matter halos. These halos, which play
an important role in the formation of galaxies, grow hierarchically through accretion or
mergers with other halos. Their gravitational interaction with baryonic matter causes gas
to fall in, making the gas cool by radiation and collapse to form stars and the first galaxies
(z ∼ 20).

Galaxies thus form as cores inlaid in extensive dark matter halos. The study of galaxy
clustering within a single halo provides information on the occupation distribution of the
galaxies within that halo. From this halo occupation distribution, gas dynamics, cooling
processes, star formation and feedback can be traced. Therefore, an unique opportunity
to track the physics behind the galaxy formation is provided, constraining and improving
galaxy formation and evolution theories.

Galaxy clustering is also one of the most important diagnostics of observational cos-
mology, analyzing the clustering of galaxies that belong to different dark matter halos con-
strains the dark matter halo population and the typical dark matter halo masses. These
halo populations tell about the initial conditions of energy density in the Universe and the
matter content across the Universe, which make galaxy clustering one of the most signifi-
cant observational constrains for cosmological simulations, an extraordinary way of testing
the cosmological models with observations.

Approaching even larger scales (∼ 100 h−1Mpc), galaxy clustering studies detect an
excess which shows evidence for the initial fluctuations in the energy density of the early
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CHAPTER 1. INTRODUCTION 2

Universe. These baryonic acoustic oscillations (BAO) provide length scales and thus a
better understanding about the nature of dark matter and the acceleration of the Universe.
BAO give the sufficient information to calculate the Hubble and angular diameter distances
that illustrate the dark energy behaviour.

The aim of this thesis is to explore how to analyze the spatial distribution of the sam-
ples of Lyman Alpha Emitters (LAE) detected by the Multi Unit Spectroscopic Explorer
(MUSE) at the Very Large Telescope (VLT). Different methods to study the galaxy cluster-
ing will be used and discussed, a random sample of LAEs that mimic our real sample will
be created and the galaxy evolution of the samples will be explored by seeking clustering
signals depending on distinct galactic properties.

1.1 Large Scale Structure of the Universe

The Universe is not homogeneous at small scales (< 40 Mpc) and its inhomogeneity at
scales larger than the galactic sizes is known as large scale structure of the Universe.
Galaxies are not uniformly distributed, they are allocated in groups or clusters of sizes of
few Mpc. Following a well defined structure, they are generally formed along thin filaments
and group together into galaxy clusters at the nodes (intersections of filaments of galaxies).
However, most of the volume of the universe is occupied by voids, almost empty regions
where just a few galaxies lie on. Therefore, the galaxy density in voids is much lower than
in filaments or nodes and, comparing it to the baryonic density of a galaxy, the difference
is even higher.

It was already in 1934 when Hubble used the Shapley-Ames catalog (Shapley and Ames,
1932) of bright galaxies to conclude that there was an excess in the number of galaxies
compared to the expectation from a random Poisson distribution on angular scales of less
than ∼ 10◦(Hubble, 1934). 43 years later, Seldner et al. (1977) published maps showing
clearly the inhomogeneous distribution of galaxies across the sky and, it was Peebles the
one who analyzed statistically the data. In this way, once the spectra of the galaxies were
taken, the first large scale redshift survey was settled in this same year.

From 1978, mapping the three dimensional spatial distribution of galaxies started to
become possible and new volumes of the sky commenced to be studied. By studying bigger
and separate volumes, it became likely to observe, the so called at present, filaments, nodes
and voids. Afterwards, with the improvement of fiber-optics and multi-slit spectrographs,
redshift surveys were steeply enhanced. Nowadays, the Sloan Digital Sky Survey I (SDSS)
with more than a million redshifts is the most extended survey at low redshifts (z ≈ 0.1),
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Figure 1.1: Left: Spatial distribution of galaxies as function of redshift and right ascension
from the 2dF Survey (Colless et al., 2001). Center: Same as in the left panel but as
function of velocity, right ascension and within 10◦ < δ < 20◦ from the CfA survey (Davis
and Peebles, 1983). Right: Distribution of galaxies brighter than B ≈ 19 in cells of 10’ x
10’ in the northern hemisphere from the Seldner catalog (Seldner et al., 1977).

whereas DEEP2 Redshift Survey or the VIMOS-VLT Deep Survey rule at higher redshifts,
z ≈ 1 and z ≈ 2, respectively (see Figure 1.1).

Already in the right panel of Figure 1.1 (Seldner et al., 1977), it is possible to appreciate
the nonuniform distribution of galaxies on the sky. With the actual catalogs (left panel,
Colless et al. (2001)), it is even likely to perceive voids (few tens of Mpc in size), clusters
of galaxies and the filamentous web structure of the Universe.

Nowadays, it is even possible to obtain the large scale structure of the Universe that we
observe by running simulations. One of the best examples is the Millennium simulation,
a N-body run, that is able to show the matter distribution in the Universe as a function
of time or redshift (see Figure 1.2 where the difference between theory and observations is
negligible). Particularly, it analyzes how the galaxies were formed compared to observations
and provides an exceptional tool to compare both observations and predictions. Such is
the case, that it can perfectly reproduce the location of the galaxies with tiny differences
from the CfA and the 2dF surveys.

Analyzing this large scale structe is essential to have a more accurate understanding of
the Universe. The structures seen at present are actually ancient fossils from the conditions
of the early Universe. Hence, the history of galaxy and structure evolution and formation
is recorded in those galaxies that form the visible structure at present.

The measurements of the large scale structure is also a way to probe conditions before
the epoch of recombination, providing information on quantum mechanical effects occurred
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Figure 1.2: From left to right and clockwise: the 2dFGRS, SDSS and CfA2 surveys in
bluish colors and the theoretical Millennium galaxy distribution predictions for the same
surveys in reddish colors from Lemson et al. (2006).

at that time. As explained by inflationary models, quantum fluctuations expanded into
the largest structures that we witness today, explaining the temperature deviations ob-
served in the cosmic microwave background and the anisotropic clustering of galaxies in
the Universe. As an example, this fluctuations, which are also called Barionic Acoustic
Oscillations (BAO), were detected by Cole et al. (2005) in the 2dFGRS survey by ana-
lyzing the power spectrum employing a direct Fourier method. In a different way, BAO
were also detected by Eisenstein et al. (2005) in SDSS while studying the spatial clustering
of galaxies. The excess in the correlation function was perceived at 100 h−1Mpc in the
redshift range of 0.16 < z < 0.47. However, the meticulousness of the large scale structure
depends on matter density, dark energy, galaxy formation and on their evolution as well.
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According to the cosmological principle, the Universe is homogeneous and isotropic at
large scales. However, if we zoom in different parts of the Universe this homogeneity is over
and its clumpiness is visible at all scales, from galaxies (kpc) to very large superclusters
(tens of Mpc) passing through clusters (few Mpc). The best way to reveal this structure
is by measuring the clustering in precise galaxy redshift surveys.

1.2 Galaxy Clustering

Galaxy clustering constrains host dark matter halo masses, host galaxy types, the environ-
ments in which galaxies are formed and provide clues on galaxy evolution on which large
scale structure depends.

The statistical quantity that is commonly used to describe the clustering is the two
point correlation function, ξ(r), which is defined as the probability dP over a random
Poisson distribution of finding a pair of galaxies in a volume dV at a distance r (Peebles,
1980)

dP = n[1 + ξ(r)]dV (1.1)

where n is the number density of the galaxy distribution where we want to study the
clustering. This distribution will be compared to a random distribution of galaxies that
covers the same 3D area (declination, DEC, right ascension, RA, and redshift, z) as the
real sample. Due to this comparison, the density of galaxies in the random sample should
be considerably higher in order to not introduce an excess in the clustering of the real
sample (see Figure 1.3). Moreover, in this way, Poisson errors would be subdominant.

The reason why ξ(r) is used to illustrate the clustering is because it is the inverse Fourier
transform of the power spectrum, which describes the density fluctuations of the Universe.
Therefore, a galaxy sample with overdensities with respect to a random sample will have a
clustering signal, meaning that ξ(r) > 0 (i.e. our galaxy sample clusters stronger than the
random sample). On the other hand, ξ(r) < 0 will refer to a sample that cluster less strong
than a random distribution of galaxies. The last case is ξ(r) = 0, which is the correlation
function of a sample that clusters like a random Poisson distribution of galaxies and, from
now on, it will be refered as ”no clustering” or ”0 clustering”.

However, in practise, probabilities, volumes or correlation functions are not directly
measured but ξ(r) is estimated. To proceed, a random sample of R number of galax-
ies is introduced to be analyzed in parallel with a real sample of D number of galaxies.
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Figure 1.3: Left: real sample of galaxies shown as declination and right ascension distri-
bution. On the right, the same for a much larger random sample than the real survey. In
both cases the colorbar shows different depths in redshift and DEC, RA and z cover the
same range of values.

This method is based on pair counting of galaxies within the available samples and the
consequent use of an estimator.

The most common estimators used to compute the ξ(r) discussed in the literature are:

− ξPH(r) =
DD

RR
− 1

(Peebles and Hauser, 1974)

− ξHew(r) =
DD −DR

RR
(Hewett, 1982)

− ξDP (r) =
DD

DR
− 1

(Davis and Peebles, 1983)

− ξH(r) =
DD ×RR
DR2

− 1

(Hamilton, 1993)

− ξLS(r) =
DD − 2DR +RR

RR
(Landy and Szalay, 1993)

In all cases, DD is the number of pairs within our real data sample, RR is the number
of pairs counted in the random sample and DR is the number of counted pairs between
the real and the random sample. Since the random sample is much larger than the real
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sample, the number of pairs DD, DR and RR is normalized. The full process followed to
estimate the unknown ξ(r) will be explained in detail in Chapter 6.

There are several studies that tried to determine which of the above estimators gives
the best results. At small scales, their results are almost indistinguishable but at larger
scales the differences are obvious. Pons-Borderia et al. (1999) compared the behaviour of
six estimators, finding no better performance between the Landy-Szalay and the Hamilton
estimator, having these two smaller statistical errors than the rest. So did Kerscher et al.
(2000), who showed that the Landy-Szalay and the Hamilton estimators present better
properties out of a nine estimators comparison. Though Landy-Szalay estimator requires
more computational time, edge corrections are better taken into account and the sensitivity
to the random sample size is lower, which otherwise, would alter possible clustering signals
at large scales. Due to this deed and to the fact that this estimator reaches minimal
variance, it will be one of the selected estimators to carry out the spatial clustering analysis
in this thesis (Chapter 6).

With the two point correlation function estimated, the common fit that is performed
is a power law,

ξ(r) = (
r

r0

)−γ (1.2)

where r0 is the correlation length of the galaxy sample, the distance at which the excess
probability over a random sample is 1 (i.e. ξ(r) = 1).

Depending on the kind of available data, clustering analysis can be studied in different
ways. In the case that the redshift distribution, RA and DEC are available, the common
way to study the clustering is by using the 3D two point correlation function (subsection
1.2.2). On the other hand, if the redshift distribution is not available the angular two point
correlation function (subsection 1.2.1) is used instead.

1.2.1 Angular clustering method

Obtaining the spectra of a large sample of galaxies is very expensive so the redshift data
is not always disposable. Therefore, ξ is measured in two dimensions as projected onto the
plane of the sky and renamed as two-dimensional projected angular correlation function,
ω(θ),

dP = n[1 + ω(θ)]dΩ (1.3)
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where instead of the radial distance between two galaxies, r, the angular distance
between them, θ, is introduced. dΩ is the solid angle extended between to galaxies and n
is the mean number of galaxies per steradian.

The two-dimensional clustering on the plane of the sky is a projection of the three-
dimensional clustering, ξ(r), and it can be fit as

ω(θ) = A · θ1−γ (1.4)

where A and 1-γ are the amplitude and the slope of the fit, respectively.

Normally, the observed angular clustering is estimated with one of the estimators shown
in the previous section and ω(θ) is related to ξ(r) by use of the equation 1.2, the Limber
equation (Limber, 1953), and the fit parameters. Since the angular clustering is a projection
of ξ(r), it can be deprojected by integrating along the redshift direction (i.e. the redshift
distribution must be known). Exactly because of this reason, ω(θ) might be sometimes
hard to interpret. An observed weak signal projected on the sky can be due to a low
clustered galaxy sample projected on a small distance or it can be because of the washing
out of the clustering signal due to the integration over a large distance. Hence, there is a
degeneracy between the real clustering amplitude and the redshift distribution chosen.

As it is already possible to intuit, several issues accompany this way of studying the
clustering of galaxies.

• The redshift distribution function must be known accurately. However, due to red-
shift distortions (see subsection 1.2.2), it is never perfectly assumed. Whereas in
the case of photometric surveys the redshift data is often uncertain and results in
large uncertainties in the deprojection, in spectroscopic surveys the small number of
galaxies with redshift data and the non-random slit allocation may cause artificial
clustering.

• Limber equation itself introduce errors that are not taken into account when it comes
to calculate the quoted clustering error bars.

• General angular clustering measurements are known to be low by an additive factor,
the integral constraint. This issue is due to the use of the data sample itself that
might cover small areas on the sky to estimate the mean galaxy density.

Although many attempts, that are beyond this master thesis, are applied to reduce
these error sources, ξ(r) is still uncertain. Narrow band measurements help to constrain
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a more accurate redshift distribution but it will not be precise enough unless there is
spectroscopy data available. When this situation is present, a much more pinpoint method
of clustering measurements is used instead, the spatial clustering method.

1.2.2 Spatial clustering method

Having the redshift distribution of a sample of galaxies is of great value in clustering anal-
ysis. With redshift data available, spatial clustering analysis can be accurately performed.

Measurements of the ξ(r) use the redshift of the galaxies to infer the distances between
galaxies (see Chapter 3 for details) which introduces two main problems. In the first place, a
cosmological model must be assumed as right to calculate those distances and, in the second
place, redshift space distortions (RSD) must be considered. RSD are seen as a distortion
appeared in the distribution of galaxies while using redshift-space representations. The
expansion of the Universe and the peculiar velocities of galaxies are responsible of the
Doppler shift that causes the RSD.

1. Fingers of God (FOG): The random peculiar velocities (not associated with the
Hubble flow) create a Doppler shift that makes the distribution of galaxies in a red-
shift space representation look elongated and pointing back to the observer along
the line of sight (l.o.s.) (red coloured galaxies in the bottom panel of Figure 1.4).
At small scales (< 1 h−1Mpc), these velocities deviate the real galaxy velocity from
the Hubble flow, stretching the galaxies radially and giving place to the FOG. Fur-
thermore, these velocities are related to the cluster gravity (Virial theorem), varying
the observed redshift of the galaxies and, consequently, their calculated distances.
Whereas the distance from an observer to the galaxies inside a galaxy cluster can be
considered to be the same for all of them, the redshift for each galaxy is different.
Those redshift differences are transformed into cluster elongations along the l.o.s. in
a redshift space representation (see top part of Figure 1.4).

2. Kaiser effect: At larger scales (> 1 h−1Mpc), adjacent galaxies that fall inwards
towards structures that are joining up or collapsing have coherent motions. The
massive forming structures are the cause of this gravitational infall of galaxies and
their coherent motion leads to a contraction of the groups of galaxies when they are
represented in a redshift space (see upper panel of Figure 1.5). The effects are smaller
than in the FOG case but, looking at the bottom panel of Figure 1.5, the flattening
in the ξ(r) contours is remarkable at large scales. Besides, the elongation at small
scales (FOG effect) is obvious.
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Figure 1.4: Top: group of galaxies in real (left) and redshift (right) space. Bottom: RA-
velocity representation of galaxies where the elongation towards the observer is shown in
red.

Both kind of RSD, at small and large scales, decrease the amplitude of clustering signals
to intermediate scales. Thus, to account for these effects, the separation vector between
two galaxies, r, in equations (Landy and Szalay, 1993) and (Davis and Peebles, 1983) is
split into a perpendicular component, rp, and a component along the l.o.s., π, (see Section
6 for a detailed explanation), becoming, respectively

ξ(rp, π) =
DD(rp, π)− 2DR(rp, π) +RR(rp, π)

RR(rp, π)
(1.5)

and

ξ(rp, π) =
DD(rp, π)

DR(rp, π)
− 1 (1.6)

Then, ξ(r) is recovered by projecting ξ(rp, π) along the rp axis. This is done by inte-
grating along the π direction (RSD only affect the l.o.s. component) and calculating the
projected correlation function, ωp(rp)



CHAPTER 1. INTRODUCTION 11

Figure 1.5: Top: group of galaxies in real (left) and redshift (right) space. Bottom: ξ(r)
contours in different colours along the l.o.s. distance, π, varying with the perpendicular
distance to the l.o.s., σ. Yellow colours correspond to large values of ξ(r) while green
colours represent lower values. The image is taken from John et al. (2001).
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ωp(rp) =

∫ ∞
−∞

ξ(rp, π)dπ (1.7)

where the RSD are considered to be vanished.

1.3 Lyman Alpha Emitters

Lyman-alpha emitters (LAE) are galaxies that show Lyman-alpha emission from the neu-
tral hydrogen that surround them. This emission is the most common way to detect
galaxies at high redshifts, thus, this is the most used spectral line to trace and study the
evolution of galaxies.

Between 1906 and 1914, Dr. Theodore Lyman studied the far ultraviolet region of
the electromagnetic spectrum, discovering that when exited hydrogen gas cools down, it
emits radiation in this region of the spectrum. When this radiation was viewed through a
spectroscope, it seemed to be formed by bright emission lines. He found the brightest of
these lines at 1216 Å, the Lyman-alpha line, which lies in the so called Lyman hydrogen
series and it is due to the transition of an electron from n ≥ 2 to n = 1 (see Figure 1.6).

Figure 1.6: Wavelength coverage of the Lyman serie of hydrogen. The Lyman-alpha is
shown at 1215.67 Å.

During the same years, the physicist Johannes Rydberg obtained a formula that could
predict the wavelengths of these lines. He showed that there would never be an emission
line at frequencies less than 912 Å, the Lyman limit. Since the most common element
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in the Universe is hydrogen, and stars are related to these emission lines, scientists have
found different ways of detecting these emissions from the Earth.

At present time (i.e. z = 0), the wavelengths of the Lyman lines lie within the ultraviolet
range but as the redshift is increased, the lines are shifted to the optical range. Equation
1.8 shows this transition and reason why it is possible to detect this emission with based-
ground telescopes.

1 + z =
λ

1215.67Å
(1.8)

where λ is the observed wavelength, and 1215.67 Å is the Lyman-alpha emission line
wavelength, in the ultraviolet region of the electromagnetic spectrum.

Such Lyman-alpha emission was first suggested as a signature of young galaxies by
Partridge and Peebles (1967). They studied the possibility of observing these kind of
distant galaxies, specially the newly formed ones. In order to do that, they assumed a
specific model of galaxy formation where galaxies formed due to gravitational instabilities
of the expanding gas and, in early evolutionary stages, had a phase of high luminosity. The
assumptions of this higher luminosity were 1) many of the first stars would be luminous
stars of the O-B type and, 2) the fast production of chemical elements in early stages
requires high luminosities. They concluded that Milky Way galaxy type luminosities should
be around 3 · 1046 erg s−1, ∼700 times higher than the actual one known nowadays.

Moreover, they estimated that 10% of the total luminosity of a young galaxy comes
from the Lyman lines, 6-7% from the Lyman-alpha line itself. Figure 1.7 shows the case
where all ionizing photons are converted to Lyman photons. The flux was calculated
with ∆ν = 0.002ν for the line, only taking into account the Doppler broadening from the
motions of the gas and the stars in young galaxies with velocities of ∼ 300 km/s.

Nowadays, it is known that the galaxy formation model that they utilized used too
restrictive assumptions which lead them to estimate wrong values for the Lyman-alpha
luminosities.

Several decades had to pass until the first discovery of high redshift LAEs was achieved.
Following Partridge and Peebles (1967), there were several attempts to discover these kind
of galaxies (e.g. (Partridge, 1974; Davis and Wilkinson, 1974; Meier, 1976)) but they all
failed. It was in the early 90s when the narrow-band technique (see section 1.4.1) stated
to be sucessul. The first detections of LAEs at high redshift were done by Lowenthal et al.
(1991); Wolfe et al. (1992); Macchetto et al. (1993), who detected one LAE at z = 2.3, 2.466
and 3.428, respectively, using a narrow-band filter. Afterwards, narrow-band techniques
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Figure 1.7: Spectra of young galaxies in the specific case that all photons of ionizing
radiation become Lyman photons expected by Partridge and Peebles (1967).

started to become more common and effective, detecting more than one LAE at a time.
That was the case of Cowie and Hu (1998), who detected a substantial population of
LAEs at z = 3.4. The selected samples included objects with strong Lyα, contributing
significantly to the integrated star formation at these epochs.

Up to date, the lines of LAEs are believed to be produced by outbursts of star formation
in galaxies, having high importance in the trace of dark matter halos and in the evolution
of the distribution of galaxies in the Universe. The formation of stars within galaxies emit
photons that excite the hydrogen that surrounds the galaxies. This exited hydrogen is the
one that releases the Lyman-alpha emission when it is deexcited.

LAEs are very old nowadays (200-600 million years) and are thought to be progenitors
of Milky Way galaxy types. They usually have low masses, between 108 M� and 1010 M�
and very high specific star formation rates. Furthermore, they are compact galaxies and
have low metallicities. However, there are still many unknowns, such as: the photon escape
fraction, present outflows, anysotropies in the hydrogen density distribution or their dust
content, which is thought to be the leading responsible of the Lyman-alpha escape fraction.

The detection of these types of galaxies can mainly be achieved in two different ways.
The first option is the utilization of powerful spectrographs mounted on based-ground
telescopes, whereas the second option is accomplished by narrow-band searches.
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1.4 Detection techniques

1.4.1 Narrow band selection technique

An usual detection technique for Lyman alpha emitters is the use of narrow band fil-
ters. These filters are designed to only transmit a narrow band of spectral lines from the
electromagnetic spectrum (20 nm or less in wavelength range).

The use of narrower bands increases the good performance in detecting galaxies or other
celestial objects. For instance, in Figure 1.8 is possible to appreciate how the resolution
improves as long as the bands get narrower. The big step from broad to narrow band is
quite sharp as it is also shown in Figure 1.10.

Figure 1.8: Contrast increase in the images of the nebula NGC 6888 by using broad band
(WideRed), narrow band in the red (NarrowRed) and narrow bands of 9 nm, 6 nm and 4
nm width, showing a clearer structure while narrowing down the width. The images were
taken the same night, with the same system and with equal exposure times.

Narrowband filters are made to resolve a specific emission line. With the wavelength of
the emission line known, the suitable width of the filter is employed. These carefully de-
signed filters only let a few wavelengths of light along with the emission line pass, rejecting
all other wavelength ranges. An example of Lyman alpha detection is shown in Figure 1.9,
where in blue and red two narrow band detections for Lyman alpha at redshifts 5.73 and
6.58 are displayed, respectively. On the background of the image, three broad bands (i, z,
and y) are manifested to show the difference between both different kind of bands. While
narrow band filters are utilized for single emission lines, broad band filters have a better
performance detecting the continuum. This better performance is clearly visible when it
comes to detect single galaxies (see Figure 1.10). Whereas the detection using narrow band
filters is quite precise, the use of broad band filters does not even get the galaxy in many
cases.
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Figure 1.9: Filter transmission curves of narrow band (NB816 in blue and NB921 in red)
and broad band (i, z and y) filters in Shibuya et al. (2017). The gray line denotes the OH
sky lines and the upper x-axis shows the Lyman alpha redshift.

Even if the use of narrow bands is much more precise that the use of broad band filters,
it is still not the best detection technique. Narrow band imaging can only survey a very
narrow redshift range at a time (depending on the width of the filter). The large areas of
the sky that can be surveyed with narrow band filters are countered with medium precision
due to the fact that the width of the filter is wider than the width of the emission line.
Therefore, large areas of the sky are covered, which is great to study the clustering, but the
redshifts are not perfectly precise since it is an imaging technique, something that is crucial
for clustering measurements. Besides, no clustering evolution with redshift is possible with
the use of just one filter.

Nevertheless, these uncertainties or cons for clustering analysis are overcome with the
use of spectrographs.

1.4.2 Spectrographs

Spectrographs are much more expensive instruments than narrow-band filters but, at the
same time, much they are more effective. A distribution of very precise redshifts can be
provided which offers the opportunity to study the clustering evolution of the sample of
galaxies with a high precision.



CHAPTER 1. INTRODUCTION 17

Figure 1.10: Detections of LAEs at redshift 6.6 with broad bands B, V, R, i, z and with
the NB921 filter in Ouchi et al. (2010). The spectrum of each galaxy is shown on the right
along with the redshift and name of each galaxy. Each detection is presented in a 6”x6”
square.

Spectrographs separate the light into its component wavelengths, revealing information
about the chemical content, temperature and motion of planets, comets, stars, interstellar
gas and galaxies. These instruments usually cover a wide range of wavelengths, covering
several bands of the electromagnetic spectrum. An example of a LAE spectrum is shown
in Figure 1.11.

A very common type of spectrographs to detect LAEs are the integral field spectro-
graphs, they equip the spectrograph with an integral field unit, combining spectrography
and imaging techniques, obtaining, thus, spatially resolved spectra. The existence of large
aperture and high-resolution telescopes requires these kind of spectrographs to analize the
spectra of extended objects as a function of position, which was previously carried out with
long-slit spectrographs.

Long-slit spectrographs are rather slow when it comes to get spectra. The spectrum is
dispersed perpendicular to the slit of the spectrograph, and, by shifting the position of the
slit, the spectum of points in the imaged field is obtained. Speeding up this process is done
by using integral field spectrographs, which obtain spectra in a two-dimensional field.

The most used approaches for integral field units are fibers, image slicers and lenslet
arrays.

• Fibers: the light coming from LAEs is kept by an array of fibers, which act like the
entrace slits plane of the spectrograph. The other side of the fibers are set along a
single slit that obtains a spectrum for each fiber.
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Figure 1.11: Left: LAE 101024044 in candels-cdfs-01 taken by HST ACS with the filter
F814W. The red circle is 1” in radius and the image is 6”x6”. Right: Spectrum of the
LAE at z = 4.54 taken by the spectrograph MUSE, which has been smoothed with a 9
pixel Hanning window. The lyman-alpha emission line is visible at λ = 6734.81 Å.

• Image slicer: the image got by the spectrograph is sliced in the image plane and
re-arranged in such a way that each different part of the image falls onto a slit and a
dispersing element. In that way, a spectrum is obtained for a larger area of interest.

• Lenslet array: the entrance slits plane of the spectrograph is formed by a lenslet
array, acting as spaxels. All beams generated by the lenslet array are sent through a
dispersive element and imaged by a camera. In such a way, the result is a spectrum
for each lenslet.

Nowadays, the best functioning spectrograph to detect LAEs is the 3D integral field
spectrograph MUSE.

1.5 MUSE spectrograph

In order to investigate the structure of the Universe by observing the spatial distribution
of galaxies, extensive surveys of thousands of galaxies are demanded to cover big volumes
and the large scales of the Universe. Thus, telescopes provided with the best spectrographs
are needed and cover the issues present with narrowband techniques.

The VLT1 is the most productive ground-based telescope, operated by the European
Southern Observatory in Chile and working at deep ultraviolet, visible and mid-infrared

1https://www.eso.org/public/teles-instr/paranal-observatory/vlt/

https://www.eso.org/public/teles-instr/paranal-observatory/vlt/
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Figure 1.12: Left: Model of the MUSE spectrograph. Right: Sky field slicing by image
slicers and the corresponding sending to the spectrograph.

ranges. It consists of four 8.2 m telescopes that can reach angular resolutions of about
0.001 arcseconds when they are all combined, while the single telescopes reach resolutions
of 0.05 arcseconds. The VLT is formed by large-field imagers, adaptive optics corrected
cameras, spectrographs and high-resolution multi-object spectrographs mounted on four
telescopes named Antu, Kueyen, Melipal, and Yepun, where MUSE2 is also integrated.

MUSE is a 3D integral field spectrograph that splits and slices 1 arcmin2 field on the
sky into 90000 spatial elements, creating a spectrum for each point. Since MUSE obtains
a full spectrum for each pixel, the output is a datacube. MUSE was partly built at the
Leibniz-Institut für Astrophysik Potsdam (AIP) and, in opposition to most integral field
spectrographs, the split of the field of the sky is carried out by image slicers and not by
fibers. Its functioning and the complete instrument can be seen in Figure 1.12.

MUSE uses a Wide Field Mode with a field of view that covers 1’ x 1’. Therefore, MUSE
is ideal to discover distant, high-redshift galaxies, carrying out spectroscopic analyses and,
even, studying galaxy mergers. To get the spectra of these galaxies, specially when they
are faint, a long integration time, high instrumental throughput and a good instrumental
stability is indispensable, which MUSE provides in short exposure times. Furthermore,
MUSE also has a Narrow Field Mode with a field of view of 7.5” x 7.5” with spatial
resolutions of 10−30 percent Strehl ratio in the I-Z band and a 2D spatial coverage, which
is utilized for other purposes.

MUSE was designed to study the formation of galaxies, the fluorescent emission, the
cosmic web, reionisation, gravitational lensing, supermassive black holes in nearby galaxies,

2https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/muse/

https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/muse/


CHAPTER 1. INTRODUCTION 20

galaxy kinematics, stellar populations, etc. However, the main goal was to detect the
progenitors of nearby galaxies out to redshifts of 6. Since these sources can be extremely
faint, they can only be detected through the Lyman-alpha emission line which MUSE gets.
MUSE surveys small regions in the sky to very deep redshifts, especially, it searches for
low-mass star-forming galaxies at high redshifts, LAEs.

Although these sources can be detected by using narrowband imaging getting just
one redshift at a time, MUSE searches for emission lines over a wide range in redshifts,
2.9 < z < 6.65, offering a much higher precision and redshift distribution than narrowband
filters.

MUSE reaches Lyman-alpha limiting fluxes of 3 · 10−18 erg s−1 cm−2 (Herenz et al.,
2019) with only 1 h exposure time, being an order of magnitude better than any current
narrowband imaging survey.

1.6 Key aims of this work

Further studies need to be carried out to understand and know the exact structure that
galaxies form in the Universe. It is crucial to analyze the spatial and redshift distribution
of samples of galaxies to better constrain large scale structures, dark halo populations and
the evolution of Milky Way-like galaxies through different epochs.

A new region in parameter space has recently been opened by the capability of the
MUSE instrument to survey small regions in the sky to extreme depths, especially for
low-mass star-forming galaxies at high redshifts detectable through their Lyman-alpha
emission. In a pilot study by my supervisor’s team (Diener et al., 2017) it was shown
that MUSE-selected LAEs show a significant clustering signal already in their redshift
distribution, even when using a much smaller sample than the one that is now available.

Therefore, the goal of this thesis is to explore how far we can go in measuring the
clustering of the special data provided by MUSE, to perform, as far as it is possible, a
clustering analysis of the large LAE sample from MUSE surveys. Clustering results will
be compared with the different methods applied and the dependence of clustering signals
will be studied as several properties are varied. A logical tree of steps will be followed:

1. Learn about the standard methods to measure galaxy clustering and the current state
of research in this field.

2. Acquire the data handling know-how (i.e. Python programming) needed to perform
a clustering analysis based on a given catalogue.
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3. Reproduce the results of Diener et al. (2017) using the same input catalogue (the
first 24 fields of MUSE-Wide).

4. Extend the analysis to the full MUSE-Wide catalogue and discuss the results in
relation to the recent literature and to the results from Diener et al. (2017).

5. Extend the analysis to the MUSE-Deep catalogue using the same method and com-
pare the results from the two catalogues and Diener et al. (2017) results.

6. Develop a code to simulate random samples that properly account for the survey
selection and luminosity function, study its clustering and the possible existing bias.

7. Perform the clustering analysis after splitting the samples into subsets selected by
certain properties (luminosity, redshift, stellar mass...) and compare the results for
different subsets.

8. Implement other clustering statistics than just redshift-space clustering, such as spa-
tial clustering by the use of the two point correlation function (2pcf), the projected
correlation function and the random sample generated.



Chapter 2

MUSE samples

The short exposure times and the depth accomplished by MUSE make its data special. The
wide redshift range covered provides the best opportunity to study the clustering evolution
along this range.

MUSE carries out a blind search on the sky but points at the region covered by the
Great Observatories Origins Deep Survey (GOODS), with 320 arcmin2, and the Cosmic
Evolution Survey (2 deg2) comprised of 640 Hubble Space Telescope (HST) orbits (Scoville
et al., 2007). Hence, there is photometric data available used to determine the counterparts
and the spectral energy distribution of the LAEs in the HST images, providing as important
data as stellar masses.

The sky coverage per field of MUSE is small, 1’ x 1’ arcmin, but enough to carry
out a clustering analysis. This coverage is shown in Figure 2.1 over the footprint in the
Chandra Deep/Field South region on the V-Band image from the Garching-Bonn Deep
Survey (Hildebrandt et al., 2006).

The main two surveys of MUSE, MUSE-Wide with 100 fields and 1 h exposure time
and MUSE-Deep with 9 fields and 10 h exposure time, are represented in Figure 2.1. The
9 fields of the HUDF mosaic are a reduction from MUSE-Deep data, with 1.67 h instead
of 10 h exposure time.

2.1 MUSE-Wide survey

The MUSE-Wide survey is a GTO programme that focuses on regions with extremely
deep HST imaging, specially on the GOODS-South and CANDELS Deep/CDFS (Grogin

22
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Figure 2.1: Sky coverage of MUSE. The MUSE-Wide survey with 100 fields (blue) and
MUSE-Deep with 9 fields (pink). The red lines show the contours of the GOODS-S ACS,
in yellow CANDELS-DEEP and HUDF09 parallels WFC3 regions and the black line covers
the 44 fields of the last MUSE data release (Urrutia et al., 2019).

et al., 2011) areas that contain a wide range of multiwavelength data. The MUSE GTO
programme sets a number of goals such as: the detection of large samples of LAEs that
include rare and extreme LAEs and the study of star forming low mass galaxies at inter-
mediate redshifts (Urrutia et al., 2019). Apart from these goals, MUSE has already lead
to many new scientific results. For instance, the measurement of the Lyα emitting fraction
among z > 3 galaxies (Caruana et al., 2017), the study of spatially resolved properties of
galaxies at 0.1 < z < 0.5 (Hemmati et al., 2019), the detection of signal clustering already
in the first 24 fields of MUSE-Wide (Diener et al., 2017), etc.

Since the main goal of this thesis is to explore different possibilities to analize the
clustering of MUSE surveys, the different samples will be studied in detail and split in
various number of fields.

• 24 fields: The first MUSE data release for the first 24 fields of MUSE-Wide is
presented in Herenz et al. (2017). The blind search for LAEs was done in the CDFS
region, covering an area of 22.2 arcmin2 and yielding a number of 234 galaxies in
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Figure 2.2: Left: sample of galaxies in the first 24 fields of MUSE-Wide shown as DEC,
RA and the colorbar showing different depths in redshift. On the right, the histogram
represents 234 LAEs as function of redshift.

the range 3 < z < 6. These galaxies, which 50% of them did not have spectroscopic
redshift until this catalog was published, were detected with only 1 h exposure time
and are shown in Figure 2.2.

• 60 fields: The next number of fields that will be used are the 60 fields from MUSE-
Wide shown in Figure 2.3. They are within the GOODS and WFC3 CANDELS-
DEEP regions and, once again, the exposure time is 1 h with 55.5 arcmin2 coverage,
yielding a total of 681 LAEs at 3 < z < 6.

• 69 fields: In opposition to the 60 fields, the 69 fields of MUSE-Wide cover an area
of 63.83 arcmin2 and have 9 deeper fields (1.67 h exposure time) that cover the hole
seen in the 60 fields. The number of galaxies detected in this area is 947 and are
represented in Figure 2.4.

• 77 fields: The last sample of galaxies from MUSE-Wide that will be used covers a
number of 77 fields with a sky coverage of 71.23 arcmin2. 8 extra fields from WFC3
HUDF09-1 and WFC3 HUDF09-2 parallel are added, giving a total number of LAEs
of 1080 at 3 < z < 6 shown in Figure 2.5.

If we take a closer look to any of the histograms shown below, it is possible to see
spikes in certain parts of the histograms. These spikes show a larger number of LAEs at
some redshift ranges which is a clear sign of clustering. It is worth mentioning that the bin
sizes play an important role here. In order to clarify this, I have represented with different
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Figure 2.3: Left: sample of galaxies in the 60 fields of MUSE-Wide shown as DEC, RA and
the colorbar showing different depths in redshift. On the right, the histogram represents
681 LAEs as function of redshift.

Figure 2.4: Left: sample of galaxies in the 69 fields of MUSE-Wide and the reduction from
MUSE-Deep shown as DEC, RA and the colorbar showing different depths in redshift. On
the right, the histogram represents 947 LAEs as function of redshift.
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Figure 2.5: Left: sample of galaxies in the 77 fields of MUSE-Wide shown as DEC, RA and
the colorbar showing different depths in redshift. On the right, the histogram represents
1080 LAEs as function of redshift.

Figure 2.6: Histogram representation of the 1080 LAEs in the 77 fields of MUSE-Wide with
different bin widths. From left to right, the bin widths are 0.05, 0.1 and 0.2, respectively.

redshift bin sizes the LAEs detected in the 77 fields of MUSE-Wide (Figure 2.5) in Figure
2.6.

The narrower the redshift bins are, the more visible is the LAEs clustering. By choosing
very small bin sizes, the grouping of LAEs is very clear. Such is the case of the left panel
of Figure 2.6, around z = 3.5 or z = 4.7, where the number of LAEs is almost double as
the closest bins around these redshifts. This grouping is already seen with bin sizes of 0.1
but it is not so obvious when I choose ∆z = 0.2.
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2.2 MUSE-Deep survey

The MUSE Hubble Ultra Deep Survey contains nine MUSE fields covering 90% of the
entire HUDF region, 3.6’ x 3.6’, with an exposure time of 10 h. Besides, there is a deeper
field located within the XDF region with 31 h exposure time that covers an area of 1.15
arcmin2. Therefore, many of the LAEs detected by MUSE-Deep are much fainter and less
massive than the LAEs detected in MUSE-Wide with 1 h exposure time.

In the first data release (Bacon et al., 2017), 6288 sources were extracted taking the HST
body locations as prior. Moreover, a blind search of emission line galaxies was performed,
getting 1251 galaxies in the mosaic and 306 in the ultradeep field.

MUSE-Deep is the deepest spectroscopic survey ever performed, with ∼ 100 h of ex-
posure time, it detects almost an order of magnitude more redshift data than the one got
on the UDF in the last decade. From those detections, 757 LAEs are within the range 3
< z < 6 and are represented in Figure 2.7.

As well as in MUSE-Wide, the large range of redshifts and the high quality of the
data, offers the chance of carrying out new studies to test the physical properties of galaxy
populations and their environments. For example, Guérou et al. (2017) studied the stellar
kinematics of galaxies at redshift 0.2 ≤ z ≤ 0.8, Maseda et al. (2017) the properties of CIII
emitters, Finley et al. (2017) the Fe II* emission in star forming galaxies, Ventou et al.
(2017) the evolution of galaxy merger fraction since z ≈ 6, Contini et al. (2016) the gas
kinematics and Drake et al. (2017b) the faint end of the Lyman-alpha luminosity function.

Studing the clustering of LAE in MUSE-Deep is of huge interest. It will bring the
opportunity to compare the clustering of LAEs between the main two surveys and it will
be seen that, even with such a small coverage, a clustering signal will already be seen.
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Figure 2.7: Left: sample of galaxies in the 9 fields of MUSE-Deep shown as DEC, RA and
the colorbar showing different depths in redshift. On the right, the histogram represents
757 LAEs as function of redshift.
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Redshift clustering method

The large redshift range and the small area of the sky covered make MUSE data very
special and different from other surveys. Therefore, we should try to find out how we
can measure the galaxy clustering in this kind of data. In the first place, due to these
characteristics, it is more convenient to study the clustering of the LAEs along the redshift
distance instead of performing a spatial analysis with the traditional method. In this way,
the redshift clustering method will be the first method that I will apply.

The redshift clustering method was introduced by Adelberger et al. (2005), who studied
28500 photometrically selected galaxies in the redshift range of 1.4 ≤ z ≤ 3.5, covering
an area of 0.81 deg2. First, they studied the clustering with the standard method, the
angular clustering, to use the new method afterwards and compare the outputs, getting
totally compatible results.

One of the great advantages of this method is the lack of a random sample. As it was
already explained in Chapter 1, in the spatial clustering method the creation of a much
larger random sample with the same three dimensions as the real sample is crucial. Com-
putationally talking, this increases the computational time by a huge factor (see Chapter
6). On the other hand, the visualization of the method and the consequent results are not
as clear as with the spatial clustering method.

Before explaining and applying the method, one should know the distance between
the sampled galaxies. The position on the sky of galaxies can be measured accurately
but, measuring the radial distance of these objects is something very different and several
distance estimators that depend on the chosen cosmological model should be utilized. In
this thesis, Hogg (1999) will be followed.

29
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In the specific case of MUSE samples, after fitting the Lyman-alpha emission line from
the detected galaxies, MUSE catalogs provide the three dimensions for each galaxy detec-
tion, RA, DEC, and z. Thus, distances need to be derived from these physical variables.

In the first place, from the cosmological redshift of the galaxies, the comoving distance
is derived to calculate, afterwards, the spatial clustering. The comoving distance is defined
as the proper distance divided by the scale factor, being the total line of sight comoving
distance, DC, the integration of all redshift contributions

DC = DH ·
∫ z

0

dz′

E(z′)
(3.1)

where DH is the Hubble distance, DH =
c

H0

, and H0 the Hubble constant. The

function E(z′) is proportional to the time derivative of the logarithm of the scale factor
(i.e., ȧ(t)/a(t)) and it is defined as

E(z′) =
√

ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ (3.2)

where ΩM, Ωk and ΩΛ are the baryonic, dark matter and dark energy or curvature of
space density parameters, respectively. The chosen cosmological model is Flat ΛCDM with
H0 = 70 km s−1Mpc−1, ΩM0 = 0.3 and ΩΛ0 = 0.7. Thus,

E(z′) =
√

ΩM(1 + z)3 + ΩΛ (3.3)

Taking into account pairs of galaxies, the comoving distance between two galaxies
forming a pair is transformed into

zij = DH ·
∫ z1

0

dz′

E(z′)
−DH ·

∫ z2

0

dz′

E(z′)
(3.4)

where z1 and z2 are the redshifts of the two galaxies forming each pair. This comoving
distance, zij, will be also called the l.o.s. distance, π or the radial distance as synonyms
along this thesis.

In order to calculate the transverse distance between pairs of galaxies, the angular
distance between them, φ, will be calculated from RA (or α) and DEC (or δ) of the galaxy
1 and 2 of the pair.
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φ ≈
√

(α1 − α2)2 + (δ1 − δ2)2 ·
π

180
(3.5)

Afterwards, doing use of the average redshift between pairs of galaxies, zav, the trans-
verse distance, rij, is derived

rij = DH ·
∫ zav

0

dz′

E(z′)
(3.6)

It is worth mentioning again that the distances and, consequently, the statistics de-
scribing the clustering depend on the distance definitions and on the cosmological model.
For close galaxies, the Hubble distance follows the linear law stated above but, as further
the galaxies are, the distance redshift relation is not linear anymore due to the curvature
of the space.

Once the distance between all available pairs of galaxies is calculated, the clustering
method can be applied. This method is based on the comparison of pair counts, N, at
close redshifts (i.e. different l.o.s. distances) for fixed transverse distances. In the same
way as for the spatial clustering (see Section 1), an estimator, Kb1,b2

a1,a2
, will be introduced

to proceed with the pair comparison where a1 < zij < a2 and b1 < zij < b2 bins will be
assumed to proceed with the pair counting.

Kb1,b2
a1,a2

(rij) =
Nb1,b2(rij)

Nb1,b2(rij) +Na1,a2(rij)
(3.7)

Na1,a2 and Nb1,b2 are the number of galaxy pairs in each bin at a fixed transverse dis-
tance rij. A visual example of the method is shown in Figure 3.1. At a fixed transverse
distance rij, the number of galaxy pairs is counted in the first bin (violet) along the l.o.s.
corresponding to Nb1,b2 and in the second bin (blue) corresponding to Na1,a2 . Thus, the
galaxies represented in the right panel of the figure actually represent pairs of galaxies.
Then, the first Kb1,b2

a1,a2
value is calculated. Afterwards, we shift to the next transverse dis-

tance, count the pairs and estimate Kb1,b2
a1,a2

with equation 3.7 following the same procedure
until all transverse distances are covered.

As in simultaneous, Kb1,b2
a1,a2

is related to the 2pcf through its mean value
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Figure 3.1: Redshift clustering method. Left: galaxy pairs counting in a RA-DEC repre-
sentation. Right: The colors violet and blue represent the two bins along redshift or l.o.s.
distance, zij, where the pair comparison is done at fixed selected transverse distances, rij.
The galaxies represent pairs of galaxies in this rij - zij representation.

< Kb1,b2
a1,a2

(rij) >≈

(b2 − b1) ·
pairs∑
i>j

(1 + ξb1,b2)

(b2 − b1) ·
pairs∑
i>j

(1 + ξb1,b2) + (a2 − a1) ·
pairs∑
i>j

(1 + ξa1,a2)

(3.8)

where ξa1,a2 is

ξa1,a2 =
1

a2 − a1

∫ a2

a1

dzij · ξ(rij, zij) (3.9)

and ξ(rij, zij) is the Limber equation (eq 1.2) in spatial coordinates (i.e., ξ(rij, zij) =

(r/r0)−γ) with r =
√
r2
ij + z2

ij, r0 as the correlation length and the standard value for the

slope, γ = 1.8 (Diener et al., 2017; Zehavi et al., 2002).

Hence, by using equation 3.7, I calculate the values for K that represent the clustering
and equations 3.8 and 3.9 to fit the estimator. In this way, the correlation length and the
γ factor are determined for each sample of galaxies. In opposition to the spatial clustering
case where no clustering was given by ξ(r) = 0, in this method Kb1,b2

a1,a2
= 0.5 gives the no

clustering level.
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Figure 3.2: Left: K25,50
0,25 (rij) estimator variation with the transverse pair distance rij for

the first 24 fields of MUSE-Wide got by Diener et al. (2017). The gray line represents the
expectation for no clustering. Right: the same got during this master work.

3.1 MUSE-Wide 24 fields

After Adelberger et al. (2005), this method was used by Diener et al. (2017) in a pilot
study of the first 24 MUSE-Wide fields available at that time. Therefore, as a training
purpose, the first actual goal of the master thesis was to write the codes and reproduce
the results shown in Diener et al. (2017).

Once the comoving distance between pairs of galaxies was derived with equation 3.4,
the range of l.o.s. distances chosen was comprehended between 0 and 50 cMpc (comoving
Mpc) from which the two bins are created, being 0 < zij < 25 and 25 < zij < 50 cMpc.
By binning and fixing the transverse distance calculated with equation 3.6 and counting
pairs along the l.o.s. up to 25 and up to 50 cMpc for each fixed rij bin, the estimator
K25,50

0,25 (rij) is calculated and represented in Figure 3.2. The reason why these ranges in zij
and rij were chosen is explained in Section 3.4 and the written code is shown in Appendix
7.2. In this way, the K estimator is essentially the ratio of LAE pairs within 25 cMpc and
the pairs within 50 cMpc along l.o.s. separation between galaxy pairs.

The estimator K25,50
0,25 in Diener et al. (2017) and the one calculated in this thesis are

basicaly the same, both showing a clear clustering signal at rij ≈ 3 cMpc, where the
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Figure 3.3: K30,60
0,30 estimator variation with the transverse pair distance rij for the 69 fields

of MUSE-Wide survey. The black line represents the expectation for no clustering and the
error bars are poissonian.

estimator steeply rises. In both cases, the error bars are calculated in a poissonian way,√
num/den, being num and den the numerator and denominator of the estimator Kb1,b2

a1,a2
in

equation 3.7, respectively. By fitting the increase of the estimator and using equations 3.8
and 3.9, I calculate the correlation length, r0, as well as its upper and lower limits, which
represent the 1σ errors from a χ2 analysis. While Diener et al. (2017) got r0 = 2.9+1.0

−1.1

cMpc, I calculated r0 = 3.0+0.9
−1.2 cMpc, being both values completely in agreement.

3.2 MUSE-Wide 69 fields

Following the same procedure, the same analysis was extended to the full MUSE-Wide
survey. In this case, the range of l.o.s. distance chosen was comprehended between 0 and
60 cMpc from which the two bins are created, being 0 < zij < 30 and 30 < zij < 60 cMpc.
The estimator for the full MUSE-Wide sample is shown in Figure 3.3.

The estimator K30,60
0,30 shows a clear clustering signal at rij ≈ 2 cMpc, where there is

an abruptly increase. By fitting the rise of the estimator and using equations 3.8 and 3.9,
I derived a correlation length of r0 = 2.7+0.3

−0.4 cMpc. This correlation length for z ∼ 4.07
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is in agreement with the correlation lengths got by Gawiser et al. (2007) and Ouchi et al.
(2003). The former calculated a correlation length of r0 = 3.6+0.8

−1.0 Mpc from the angular
clustering of 162 LAEs at z ≈ 3.1, while the latter obtained a correlation lenght close
to mine, r0 = 3.5+0.3

−0.3 h
−1Mpc also from the angular clustering of 87 LAEs at z = 4.86.

In both cases the selection technique was by using NB filters. Moreover, Ouchi et al.
(2010) calculated the angular correlation function and the correlation length of 207 LAEs
at z = 3.7 and 5.7 in the Subaru/XMM-Newton Deep Survey field, getting r0 = 2.74+0.58

−0.72

h−1Mpc and r0 = 3.12+0.33
−0.36 h

−1Mpc, respectively. Finally Shioya et al. (2009) studied the
angular clustering of 79 LAEs at z ≈ 4.86 selected by NBs in the COSMOS field. They
converted the angular clustering into the spatial clustering by using Limber equation to
obtain a two point correlation function with huge error bars in the correlation length,
ξ(r) = (r/4.4+5.7

−2.9)−1.9±0.22.

However, despite the agreement of the correlation lengths with the literature and as
it is clear in Figure 3.4, both clustering signals for 24 and for 69 fields show very similar
increase in the K estimator but the shapes differ. This is likely due to the larger area
covered in the 69 fields case which might decrease the ratio of number of galaxy pairs in 0
< zij < 30 and 30 < zij < 60 cMpc, causing a decrease in the K estimator and, therefore,
a decrease in the clustering signal.

Besides, apart from the different shapes, K30,60
0,30 has an excess around 4 cMpc and most

of the error bars do not agree with the 0 clustering straight line. This will be studied in
more detail with the use of a random sample in Chapter 4. Nevertheless, both correlation
lengths agree with each other, being compatible within the error bars.

3.3 MUSE-Deep

The same process has been followed for the MUSE-Deep survey. In the same way as I did
for the MUSE-Wide survey, both comoving distances are calculated and binned, being 0 <
zij < 25 and 25 < zij < 50 cMpc the chosen ranges along the l.o.s. distance. The estimator
K25,50

0,25 (rij) is calculated and represented in Figure 3.5. Since MUSE-Deep covers a much
smaller area on the sky, the transverse distances where I studied the clustering are also
smaller than in previous cases.

Taking a closer look at the Figure 3.5, it is possible to appreciate that there seems
to be an offset above the 0 clustering line much more clear than for the 69 fields case.
This can be explained if we take into account that MUSE-Deep is very small compared
to MUSE-Wide, where the clustering signal converged at around rij ∼ 3 Mpc and, in this
case, we do not reach those transverse distances.
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Figure 3.4: K estimator variations with the transverse pair distance rij for the full MUSE-
Wide survey (green) and for the first 24 fields (blue). The black line represents the expec-
tation for no clustering and the error bars are poissonian.

However, even in this small area of the sky there is an important increase in the K
estimator, steeper than in the MUSE-Wide survey. This means that the fainter galaxies
that are detected in MUSE-Deep but not in MUSE-Wide increase the clustering signal
considerably. By fitting the increase of the estimator and using equations 3.8 and 3.9,
the correlation length, r0, is estimated as well as its upper and lower limits, getting a
value of r0 = 2.6+0.2

−0.2 cMpc. In the same way as in the MUSE-Wide survey, this length is
compatible with most of the values from the literature mentioned in the previous section
that are around z ≈ 4.14. Besides, the correlation lengths from MUSE-Wide and MUSE-
Deep are in agreement as well.

3.4 Studying the K estimator in detail

The values of the K estimator depend on several parameters. First, the chosen range
of zij plays an important role as Figure 3.6 shows. Depending on the range selected, K
values vary in important quantities. For instance, by choosing very low zij range (blacK
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Figure 3.5: K25,50
0,25 estimator variation with the transverse pair distance rij for the MUSE-

Deep survey. The black line represents the expectation for no clustering and the error bars
are poissonian.

estimator in the figure), we get a much pronounced clustering signal, while choosing high
zij ranges makes the signal much lower until its disappearance.

Zij tells us how far away is one galaxy along the l.o.s. with respect to another one.
Since MUSE covers redshifts from 3 to 6, the available range goes to almost 2000 cMpc
(i.e. 2000 cMpc would be the distance between a pair of galaxies at redshift 3 and 6,
respectively). Of course two galaxies separated by 2000 cMpc are not considered as a
pair anymore. Following this reasoning, K30,70

0,30 drops its signal because the galaxies start

to be far away to consider them as pairs. On the other hand, K10,20
0,10 does not contain

many galaxy pairs (too low distance range that does not cover enough volume) which also
augments the error bars and only probes small clustering.

Therefore we need to choose a range in between these low and high ranges where the
signal converges, where clustering at small and large scales is accounted and where the
minimum possible galaxy pairs is missing. These requirements are accomplished for K25,50

0,25

in the first 24 fields of MUSE-Wide and MUSE-Deep and for K30,60
0,30 in the 69 fields of

MUSE-Wide survey.
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Figure 3.6: Different K estimators shown in different colors varying with the transverse
pair distance rij for the full MUSE-Wide survey. The black line represents the expectation
for no clustering and the error bars are poissonian.

Secondly, electing different bin sizes in rij also modifies the K estimator shape as it
can be seen in Figure 3.7. The use of larger bins smooth completely the throughout of the
redshift clustering method, while smaller bins increase all the tiny details of the K curve.
Rij cannot be larger than the total distance spanned by the total full MUSE-Wide survey
because there would be no galaxy pairs further than that limit. As already mentioned,
the survey covers an area of 1’x 1’ per field which is translated into maximum values of
rij ∼ 24 cMpc (i.e. 24 cMpc would be the transverse distance of a pair of galaxies with
the minimum and maximum RA and DEC values at a mean redshift of 4.02). Since that
distance covers the MUSE edges and there are not so many detected galaxies at those
points, the maximum rij value is chosen to be 12 cMpc.

Finally, different selection of fields with different exposure times also make a change
in the K estimator, though softer than in previous cases (see Figure 3.8). This can be
explained with the decrease of pairs due to the lower number of fields. Moreover, referring
to Chapter 2, the 9 udf fields excluded have 1.67 h exposure time against the 1 h exposure
of the other 60 fields, which gives a higher number of galaxies per field. The number of
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Figure 3.7: Left: K30,60
0,30 estimator variation with the transverse pair distance rij for the

full MUSE-Wide survey, choosing a total of 4 bins. Right: the same with 11 bins. In both
plots, the straight line represents the expectation for no clustering.

galaxies in the 9 fields is 266, which is an important quantity compared to the total number
of galaxies in the 60 fields survey (947 LAEs).

Despite the changes in the shape of the K curve or in the maximum value of clustering
signal reached, the correlation length barely changes as in the bin sizes case. Including or
not the 9 udf deeper fields changes r0 very slightly, from r0 = 2.7+0.3

−0.4 to r0 = 2.6+0.6
−1.0 cMpc

but different K estimators (i.e. different zij ranges to count LAEs pairs) change this value
in a stronger way. For example, choosing extreme estimators, K10,20

0,10 and K35,70
0,35 , changes

the r0 from r0 = 3.2+0.3
−0.3 to r0 = 2.9+0.3

−0.4 cMpc.

Due to these different r0 values, to the different maximum values of the K estimator
using 24 and 69 fields and to the offset above the 0 clustering line, I wanted to test the
redshift method. In order to carry out this test, the K method will be run over a random
sample created from our LAEs samples in the next chapter.
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Figure 3.8: Left: K30,60
0,30 estimator variation with the transverse pair distance rij for the

full MUSE-Wide survey (69 fields in green). Right: the same with the 60 fields in blue. In
both plots, the straight line represents the expectation for no clustering.



Chapter 4

Analysis of a random sample of
galaxies

Testing that we are not biased not only gives information about the possibility of having
issues inside the method itself but also about the error bars. The best way to test the
redshift clustering is by running it over a random sample of galaxies where it is expected
to present 0 clustering.

Nevertheless, we cannot take any random sample. The random sample should be
realistic, it should account for the LAEs contained in the MUSE samples. In other to
achieve this, the survey footprint, the selection function and the luminosity function of our
galaxies must be taken into account.

• Selection function: As its name indicates, the selection function accounts for the
selection effects in the instruments of the telescopes, selection methods, depth, for
the way the surveys are built, etc. In our case, the number of galaxies decreases
as the distance increases because the surveys are flux-limited. This produces that
only bright enough galaxies above the limiting apparent magnitude of the survey are
detected. Thus, only the most luminous galaxies are seen at large distances.

In addition to the flux limitation, the sky is not isotropically transparent to the other
galaxies’ light because of the absorption by dust in our galaxy. The flatness of the
galaxy make some regions more obscure than others which affects the brightness of
an external galaxy and depends on the direction of the l.o.s.. Besides, the way the
samples are built (i.e. the masks used for each field, fibre collisions in the spectro-
graphs, taking into account that the luminosity of the galaxies at deep redshifts is

41
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Figure 4.1: Left: Ratio fo the stack over the fractions of detected sources, Ndet, and
the total number of detections, N total, of the ten different MUSE HDFS LAEs used (see
(Herenz et al., 2017)). Each colored curve represents the selection function at a different
wavelength. Right: Selection function fC(FLyα, λ) shown as a colorbar for LAEs in the
MUSE-Wide survey. The white and black lines indicate the 15% and 85% completeness
limits, respectively.

detected at longer wavelength than the one emitted, etc) has also an impact on what
type of galaxies are selected, hence, on the selection function.

In order to take into account this incompleteness, the selection function is calculated,
providing the probability that a galaxy is detected at a given distance (see Figure
4.1). The selection function is not a step function, there is no fixed flux value above
which all galaxies are detected and below which there are no detections. Instead, the
selection function is a curve that depends on wavelength.

Traditionally, the selection function is estimated from the luminosity function.

• Luminosity function: Given a range of intrinsic luminosities, the luminosity func-
tion, n(L), is defined by the number density of galaxies in that range. It is a distri-
bution function, a distribution of luminosities within a given range of luminosities.

Luminosity measurements are hard to achieve because the total luminosity requires
the exact distance to the object and the integration of the spectrum of the object
over all wavelengths. Thereby, instead of the total luminosity, the specific luminosity
over a given band is measured, giving the number of galaxies at the frequency range
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Figure 4.2: Differential MUSE-Wide LAE luminosity function for the total redshift range of
MUSE-Wide 3 < z < 6.7 from Herenz et al. (2019). Filled black circles show the real source
selection function corrected binned, open black circles show the point source selection
function corrected binned, blue open circles with red error bars the binned estimates by
Drake et al. (2017b), red squares with blue error bars show the binned estimates by Drake
et al. (2017a) and the ones by Bina et al. (2016) are the red squares with black error bars.
Yellow and dark yellow shaded regions indicate the 68.3% and 95.4% confidence regions
for a Schechter parameterisation, respectively.

of the band.

Generally, the Schechter luminosity function (Equation 4.1) is the traditional form
to describe the space density of galaxies as a function of their luminosity, L. This
function depends on different parameters that change for different morphologies,
environments or redshifts due to galaxy evolution. The luminosity function is formed
by an exponential and a power law.

n(L)dL = φ∗(
L

L∗
)αe−L/L

∗ dL

L∗
(4.1)

L* is the characteristic galaxy luminosity that separates faint and bright galaxy
ranges in the power law and φ∗ is the normalization parameter in units of number
density.
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Figure 4.3: Left: random sample of galaxies in DEC and RA distribution. The colorbar
shows different depth in redshift. Right: Number of the 400 random LAEs with redshift
shown in form of a histogram.

Figure 4.4: K25,50
0,25 estimator variation with the transverse pair distance rij for four different

random samples (different colours) created from the full MUSE-Wide survey. The black
straight line shows no clustering.
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The luminosity function from LAEs in MUSE-Wide was calculated by Herenz et al.
(2019) and it is shown in Figure 4.2. It is visible that the luminosity function decreases
with the luminosity of the Lyman-alpha emission line, detecting more galaxies with
low luminosities than with large luminosity values.

Taking into account both functions with flat flux assumption, the realistic random
sample of LAEs from MUSE surveys is created and shown in Figure 4.3. The K estimator
was afterwards tested on this random sample in the same way as for the real samples and
is represented in Figure 4.4.

As we see in Figure 4.4, the random sample does not show any signal clustering, being
consistent within the error bars with K = 0.5. Furthermore, the correlation lengths calcu-
lated for random samples have values of the order of r0 = 1.0+1.1

−0.5, r0 = 0.1+0.1
−0.1, r0 = 0.9+1.5

−0.9

Mpc, etc... which give mean null correlation lengths.

In this way, apart from proving that we do not introduce any excess of clustering signal
in our MUSE samples calculations and that we get the expected 0 clustering for a random
sample, I can also study how these errors affect our measurements.

In order to estimate the errors that are introduced by using this method and to compare
them to the poissonian ones calculated along this thesis, I calculate the K estimator over
100 different random samples, calculating their corresponding Poisson errors the 100 times.
Afterwards, the average of the 100 times of the K estimator with the average of the 100
times Poisson errors is represented in Figure 4.5.

Having the mean error bars of the 100 random samples gives us an estimation of the
excess clustering that we may introduce with this method as a systematic error. The mean
values of K with their corresponding mean error bars above the 0 clustering straight line
in Figure 4.5 provide the excess introduced in our measurements. However, the majority
of data points with their errors fall on the no clustering line with a small discrepancy in
two of the dots. Looking closer at these two points, they have a discrepancy of 0.1% and
0.4% with respect to the 0 clustering line once the error bars are taken into account, a
quantity that is not significant in comparison with the whole set of points.

As expected, the errors for the K values decrease with higher number of galaxies as
can be already seen in Figure 3.4. The errors seen in Figure 4.5 are much smaller than
the Poisson errors calculated for the clustering of the 24 fields, the full MUSE-Wide and
the MUSE-Deep surveys. Therefore, we can conclude that the errors introduced by the
method are insignificant and we are not biased when we use the redshift method since we
get the expected 0 clustering for a realistic random sample of LAEs that cover the same
area as the MUSE-Wide survey.



CHAPTER 4. ANALYSIS OF A RANDOM SAMPLE OF GALAXIES 46

Figure 4.5: Mean K25,50
0,25 estimator of the 100 different random samples created as a function

of transverse pair distance. The black straight line shows no clustering and the error bars
are the errors of the average K values, the mean of the 100 Poisson error calculations for

each different random sample divided by
√

100 (i.e.
∑100

i=1

√
num
den

100
· 1√

100
).



Chapter 5

Clustering dependence on physical
properties

Different physical processes and properties are needed to explain environmental trends in
star formation and in galaxy structure. By using clustering signals, one can also trace
the dependence of large scale structure on galaxy properties such as luminosity or star
formation rate, stellar mass, and track its evolution with redshift. Up to date, the general
clustering trend as function of properties that has been found is that more luminous, early
type, redder and more stellar massive galaxies are clustered stronger than fainter, late type,
bluer and less stellar massive galaxies.

Zehavi et al. (2002) carried out the first clustering analysis in the SDSS survey. With
a total of 29.300 galaxies in the range 0.019 < z < 0.13 and in an area of 690 deg2.
The sample was divided by color, showing that red galaxies exhibit stronger and steeper
correlation functions than blue galaxies. For galaxies with absolute magnitudes around
M* ∼ -1.5, M* and M* ∼ 1.5, they calculated correlation lengths of r0 = 7.4, 6.3 and 4.7
h−1Mpc with a slope of γ = 1.8. For red galaxies they calculated r0 ≈ 6.78 h−1Mpc with
a correlation slope γ ≈ 1.86, while for blue galaxies the correlation length and clustering
slope were r0 ≈ 4.02 h−1Mpc and γ ≈ 1.41, respectively.

Kauffmann et al. (2004) found that star formation and nuclear activity depend strongly
on local density for a given stellar mass, whereas parameters like size or concentration are
nearly independent of it. Li et al. (2006) used a sample of 200000 galaxies from the SDSS
in the range 0.01 < z < 0.03 to study the evolution of the spatial clustering with stellar
mass, colour, 4000 Å break strength, contraction index and stellar surface mass density.
They showed that more massive galaxies, redder, with larger 4000 Å break, with larger
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concentrations or higher surface mass densities cluster stronger.

On small scales, the clustering amplitude increases steeply for galaxies brighter than
L*, whereas below that limit it barely varies. On larger scales, clustering amplitude and
luminosity are positively correlated (consistent with the studies carried out by Zehavi et al.
(2005) in SDSS for galaxies between Mr ∼ -17.5 and -22.5 (see Figure 5.1a).

g-r color and D4000 also vary the clustering amplitudes. Redder galaxies show steeper
correlation functions and cluster stronger (see Figure 5.1b, c), showing a much stronger
dependence than on the concentration or surface mass density. In the case of concentra-
tion or surface mass density, there is only clustering differences at small scales when the
luminosity and the stellar mass are fixed to a certain value. However, no difference is
appreciated between high and low concentrations or surface densities on larger scales. The
variation of clustering as a function of concentration was studied by Goto et al. (2003) for
galaxies between redshifts 0.05 and 0.1 in SDSS too. According to their study, in inter-
mediate density regions (1−6 Mpc−2) intermediate-type galaxy fractions increase towards
denser regions, while late-disc galaxy types decrease. In dense regions (> 6 Mpc−2) the
opposite effect is seen (see Figure 5.1d).

Norberg et al. (2001) studied the clustering strength of galaxies in the 2dFGRS varying
with luminosity. They found an increase in the clustering amplitude with absolute magni-
tudes. The correlation function rose four times from MbJ − 5log10h = -18 to -22.5 and the
most luminious galaxies clustered 3 times stronger than L* galaxies. Same results were
predicted by the galaxy formation models of Benson et al. (2000) and the studies carried
out by Zehavi et al. (2011).

Norberg et al. (2002) and Madgwick et al. (2003) studied the clustering as function
of the galaxy spectral type in 2dFGRS. Norberg et al. (2002) divided the sample into
late type galaxies (with strong emission lines) and early type galaxies (more quiescent
galaxies), finding that the slope of the correlation function is steeper for early types than
for late types, having almost the same clustering strength dependence on luminosity. The
clustering amplitude increased 2.5 times from L* to 4L* and, at all luminosities, the
correlation function amplitude for early types was double than that of late types. In this
way, they showed that it is the luminosity and not the galaxy type the dominant factor
that determines the clustering strength variation with luminosity. Following the same line,
Madgwick et al. (2003) proved that, at small separations, passive galaxies cluster stronger
than more active star forming galaxies, having slopes of 1.93 and 1.5, respectively.

The same study was carried out by Budavari et al. (2003) in the SDSS, finding that
r0 increases 1.6 times with luminosity over the sampled luminosity range. In agreement
with the studies mentioned above, they found that galaxies with spectral types similar to
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Figure 5.1: (a) Luminosity dependence of galaxy clustering in SDSS where different colors
represent different absolute magnitudes from Zehavi et al. (2005). (b, c) Correlation length
and slope as a funcition of luminosity. Blue, red and black represent blue, red and total
number of galaxies in SDSS. (d) Distribution of galaxies in a redshift space where the
different colors represent the g-r color shown in the colorbar. Last three panels were taken
from Zehavi et al. (2011)

elliptical galaxies have a correlation length of ∼ 6.59 h−1Mpc and a slope of 0.96 (for the
angular correlation function), while blue galaxies have a clustering length of 4.51 h−1Mpc
and a slope of γ ≈ 0.68.

Kauffmann et al. (1999) focused on the differences in clustering for galaxies with dif-
ferent luminosity, colour, morphology and star formation rate to learn about the galaxy
formation process. The clustering evolution of galaxies selected in the rest frame B band
(442 nm, blue) was compared to the clustering of galaxies selected with the I band (806
nm, red), getting at least 0.5 h−1Mpc higher correlation lengths for redder galaxies. In
both cases, r0 increases from z = 1.5 to z = 5. Then, the clustering variation with magni-
tudes was analyzed, obtaining that more negative magnitudes cluster stronger than higher
ones. Again, in both cases the r0 curve increases over redshift. Moreover, they found that
galaxies with higher stellar formation rates (SFR) cluster stronger and both r0 trends (for
low and high SFR) increase after redshifts of ∼ 2. Lastly, the clustering of early type
galaxies at fixed stellar mass shows very similar r0 values over the redshift range 0 < z <
3, getting minimum values of 6.5 and maximum values of 7.1 Mpc.

Since galaxy clustering measurements trace the underlying dark matter (DM) density
field and vice versa, the use of N-body simulations to study the clustering of haloes pro-
vides insights of galaxy clustering. For a given cosmology, the galaxy clustering amplitude
depends on their DM halo masses and its evolution depends on the change of the halo mass
distributions over time. Therefore, a combination of N-body simulations and semi-analytic
modelling of galaxy formation was carried out by Kauffmann et al. (1999) to analyze the
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clustering evolution with redshift assuming the ΛCDM model (Ω = 0.3, ∆ = 0.7 and H0 =
70 km s−1Mpc−1) and the τCDM model (Ω = 1, τ = 0.2 and H0 = 50 km s−1Mpc−1).

For halos of masses ∼ 11− 11.5M� they found correlation lengths of ∼4.0 Mpc at z =
0, ∼3.0 Mpc at z = 1, ∼2.8 Mpc at z = 2 and ∼3.0 Mpc at z = 3. For halos of masses
∼ 11.5− 12M� they found correlation lengths of ∼3.0 Mpc at z = 0, ∼2.6 Mpc at z = 1,
∼2.8 Mpc at z = 2 and ∼3.0 Mpc at z = 3. For halos of masses ∼ 12−12.5M� they found
correlation lengths of ∼3.2 Mpc at z = 0, ∼3.4 Mpc at z = 1, ∼3.8 Mpc at z = 2 and ∼4.6
Mpc at z = 3. In the last place, halos of masses ∼ 12.5 − 13M� they found correlation
lengths of ∼4.4 Mpc at z = 0, ∼4.6 Mpc at z = 1 and ∼5.9 Mpc at z = 2. However,
all these values are lower than using τCDM model due to the later structure formation
assumed in this model.

Up to date, several attempts to study the clustering evolution of LAEs with redshift
were done and shown in Figure 5.2 (see Chapter 6 for an explaination on how they obtained
these values). It is seen that LAEs occupy denser regions of the universe at higher redshifts,
shown by the increase of the clustering strength.

In the specific case of LAEs, Ouchi et al. (2003) studied the angular clustering of 87
LAEs selected by a combination of two broad bands and one NB in the Subaru survey (z
≈ 4.86) as a function of Lyman-alpha luminosity, UV continuum luminosity and Lyman-
alpha equivalent width. They found that brighter LAEs cluster stronger and no difference
between UV continuum luminosity or equivalent width was appreciated, indicating that
galaxies with bright Lyman-alpha emission may be biased against the underlying dark
matter halos in a stronger way than those with bright UV continuum.

In order to interpret clustering dependencies in the field of galaxy formation models,
galaxy clustering is preferentially studied in terms of galaxy mass, size or mean stellar age
instead of luminosity or color which are the traditional physical properties for comparison.
This is due to the fact that luminosity and stellar mass do not always necessarily correlate.
Depending on the dust content and on the fraction of young stars, the clustering comparison
gets tricky, specially between galaxies at low and high redshifts due to the strong evolution
of stellar formation rates with z.

However, in our case we only have certain properties available. In the first place, MUSE
provides the largest redshift range up to date so the evolution of the LAEs in the samples
can be tracked with redshift. Due to the growth of structure over different epochs caused
by gravity, clustering is expected to follow the same trend. Nevertheless, its evolution
depends on Λ and ΩM . A larger Λ gives larger voids and increases density limits between
overdense and underdense areas. Studying the galaxy clustering at high redshift is essential
to break these relations constrained by low redshift measurements. Thereby, determining
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Figure 5.2: Literature values of r0 as function of z. Red stars show the calculated r0 values
from the first 24 fields of MUSE-Wide split by redshift (Diener et al., 2017) while the rest
of the values are calculated from NB surveys in our redshift range (red bar) shown in the
legend.

the clustering evolution with redshift constrain both cosmological parameters and galaxy
evolution theories.

Since overdense regions increase their density as gravity forces galaxies to move towards
groups or clusters, an increse of r0 over time is expected. On the other hand, the expansion
of the Universe (i.e. the Λ parameter) and the formation of new galaxies, while others grow
in mass and luminosity, have the opposite effect.

In order to test these ideas, I divide the MUSE-Wide sample in low (3 < z < 4),
medium (4 < z < 5) and high (5 < z < 6) redshifts and I calculate the K estimator in
the three ranges. The ranges selection has been done in such a way that we have enough
number of galaxies (491 for low, 347 for medium and 111 for high redshifts) to be able to
use the redshift clustering method. Since the range of high redshift galaxies have many
less galaxies, the error bars will be larger than in the other two redshift ranges. This result
is shown in Figure 5.3.

Despite the large error bars, specially for the range 5 < z < 6, the tendency of the K
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Figure 5.3: K25,50
0,25 estimator variation with the transverse pair distance rij for three different

ranges of redshift of the LAEs of MUSE-Wide. The blue line shows the clustering at
3 < z < 4, the green at 4 < z < 5 and the red at 5 < z < 6. The black straight line shows
no clustering and the error bars are poissonian.

estimator seems to show higher clustering signals as we increase the redshift. However,
due to the errors, all redshifts seem to cluster in a similar way. The correlation length for
the three cases was calculated, getting values of r0 = 2.7+0.4

−0.5, r0 = 3.8+0.5
−0.6, and r0 = 3.5+1.4

−1.9

for low, medium and high redshifts, respectively.

Since large samples that are so deep in redshift are not common, there are barely any
study to which we can compare my results to. However, NB clustering studies can combine
several NBs to study the clustering evolution with redshift. This is the case of Ouchi et al.
(2010) whose results are in agreement with the possible trend appreciated in Figure 5.3.

In the second place, around 50% of the LAEs in MUSE-Wide present a catalogued
counterpart so the spectral energy distribution (SED) of the available LAE was deter-
mined with FAST (Kriek et al., 2009). From those best SED fittings of the photometric
points, parameters such as stellar ages, star formation rates and extinctions are calculated.
Nevertheless, the most trustworthy parameters are the stellar masses, even if they could
be several factors off since it is really hard to get the right stellar mass at high redshifts
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with the available data. The LAEs stellar masses are available for a total of 44 fields from
MUSE-Wide.

Thereby, the 44 fields were split in low (logM < 8.5) and high stellar masses (logM
> 8.5), with a total number of galaxies of 123 and 133 for each mass range. Following
the same procedure as previous times, the clustering evolution with the stellar masses is
studied in Figure 5.4. Unfortunately, once again, the low number of galaxies produce large
error bars that do not allow us to differentiate between the way that high and low stellar
masses cluster.

Figure 5.4: K25,50
0,25 estimator variation with the transverse pair distance rij for the LAEs

with low (blue) and high stellar masses (red) in the first 44 fields of MUSE-Wide. The
black straight line shows no clustering and the error bars are poissonian.

Calculating the correlation length for this case does not provide any difference between
low, r0 = 3.5+2.2

−3.0, and high stellar masses, r0 = 3.1+1.8
−2.5, the errors are so large that no

clustering signal difference can be appreciated.

In the third place, the variation of clustering with the equivalent width (EW) of the
Lyα lines of the 60 fields from MUSE-Wide was studied since it is believed that the EW
of the Lyα line and the dust content, the clumpiness of the interstellar medium and the
metallicity of the galaxy are related (Finkelstein et al., 2008). In this case, I divided the
MUSE-Wide survey in low (EW < 120) and high (EW > 120) EW values, with 242 and
234 LAEs in each EW division. Carrying out the same clustering analysis, the clustering
variation of LAEs as function of their EW is shown in Figure 5.5.
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Figure 5.5: K25,50
0,25 estimator variation with the transverse pair distance rij for the LAEs

with low (blue) and high (red) EW of the Lymanαvalues in the 60 fields of MUSE-Wide.
The black straight line shows no clustering and the error bars are poissonian.

Once again, the low number of sampled galaxies gives large error bars that make us not
distinguish between the clustering of galaxies with low and high EW. Correlation lengths
were calculated for low EW, r0 = 1.2+1.4

−1.2, and for high EW, r0 = 2.7+1.3
−1.7, confirming the

plot results of similar clustering within the errors for both samples. This no difference in
clustering as function of EW was also obtained by Ouchi et al. (2003).

In the forth place, the variation with Lyα luminosity of how LAEs cluster was studied.
In this case, I divided the MUSE-Wide survey in low (logL < 42.4) and high (logL >
42.4) Lyα luminosities, with 254 and 222 LAEs in each luminosity division. Carrying out
the same clustering analysis, the clustering variation of LAEs as function of their Lyα
luminosity is shown in Figure 5.6.

Due to the smaller error bars than in the previous cases, it is possible to start seeing
a suggestive trend of LAEs with higher Lyα luminosities clustering in a stronger way.
Anyway, it is not possible to claim that more luminous LAEs cluster stronger than fainter
LAEs yet but a small difference can already start to be seen. The calculated correlation
length for fainter LAEs is r0 = 2.3+1.0

−1.3, while for high luminosities it is r0 = 3.2+1.3
−1.6.
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Figure 5.6: K25,50
0,25 estimator variation with the transverse pair distance rij for the LAEs

with low (blue) and high luminosities (red) in the 60 fields of MUSE-Wide. The black
straight line shows no clustering and the error bars are poissonian.

Hypothetically, if the error bars would be smaller, these results would be meaningful and
completely compatible with the results obtained by Norberg et al. (2001); Zehavi et al.
(2011); Budavari et al. (2003), who used the total luminosity of the galaxies instead of the
Lyα luminosities.

Finally, the star formation rate, SFR of the LAEs of MUSE-Wide was calculated from
the Lyα luminosity, LLyα, using equation 5.1 (Dijkstra and Westra, 2010)

SFR(Lyα) = 9.1 · 10−43LLyα (5.1)

Since both luminosity and SFR are proportional, the clustering plots and correlation
lengths are the same, thus, the clustering graph has been omitted.



Chapter 6

Spatial clustering method

For the first time, MUSE data brings the opportunity to study the spatial clustering of
Lyα selected LAEs. The precise spectroscopic redshifts and its large depth covered get
rid of the main issues of the last decades. Nowadays, the redshift distribution does not
have to be extracted from photometric surveys or from NB filters, with the errors that it
would entail. Thus, the angular clustering method and the Limber equation are not needed
anymore, eliminatting the main error sources of recent times.

As part of the exploration on how to perform clustering analysis of this special data
(small coverage but very deep in redshift), expanding the initial goals of my thesis to
carry out a comparison between the redshift clustering results and the ones obtained by
the traditional and reliable method should be done to check if both methods agree. The
spatial clustering method has been used since the 70s in very different kind of surveys,
providing results in agreement with cosmological simulations.

Zehavi et al. (2002) carried out the first clustering analysis in the SDSS survey with a
total of 29.300 galaxies in the range 0.019 < z < 0.13, covering an area of 690 deg2. They
calculated the ξ(rp, π) of the sample, obtaining a correlation length of r0 ≈ 8.0 h−1Mpc
and a spatial clustering slope of γ ≈ 1.75. The correlation function showed clear signs of
RSD caused by the peculiar velocity of the galaxies and the coherent motions of infalling
structures. They derived galaxy pairwise velocity dispersions of the order of 600 ± 100
km/s. Similar results were obtained by Tucker et al. (1997) in Las Campanas Redshift
Survey.

Durkalec et al. (2015) studied the evolution of clustering using the VIMOS Ultra Deep
Survey in the range 2.0 < z < 5.0. They measured the ωp(rp) of 3022 galaxies with
spectroscopic redshifts in a 0.8 deg2 area and found r0 = 3.95 ± 0.54 h−1Mpc at z ≈ 2.5
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and r0 = 4.35± 0.60 h−1Mpc at z ≈ 3.5 after using mock samples to evaluate and correct
for the survey selection function.

However, for the specific case of LAEs, since they were always NB-selected with no
redshift depth, angular clustering was everything that it could be done. Gawiser et al.
(2007) studied the angular clustering of a sample of 162 LAEs at z ≈ 3.1 selected by deep
NB MUSYC imaging of the Extended Chandra Deep Field-South. The angular clustering
was converted to spatial clustering by using Limber equation and the correlation lengths
were calculated. LAEs were found to have a correlation length of r0 = 3.6+0.8

−1.0 h
−1Mpc. A

very similar length was obtained by Ouchi et al. (2003), who studied the clustering of 87
LAEs selected with the NB technique at z = 4.86 in the Subaru Deep Field, 543 arcmin2.
They also calculated the angular clustering of the sample and translated it into the spatial
clustering, getting r0 = 3.5+0.3

−0.3 h
−1Mpc.

Kovač et al. (2007) analyzed the angular clustering of 151 LAE at higher redshifts (z ≈
4.5) from the Large Area Lyman Alpha survey. The LAEs were within an area of 36’ x 36’
that was covered with five narrowbands. From the power law parameters of the angular
clustering, they derive the correlation length of the real-space two-point correlation func-
tion, r0 = 3.20± 0.42 h−1Mpc. Due to a possible contamination by randomly distributed
sources, the correlation length was recalculated to r0 = 4.61 ± 0.6 h−1Mpc. Comparing
to the expectation from simulations, they found that LAEs reside in halos with a typical
minimum mass of 1−2·1011 h−1M�.

Following the same process, Khostovan et al. (2018) utilized 5000 LAEs from Slicing
COSMOS 4K and from archival NB497 imaging of SA22. From the angular correlation
function they calculated r0 = 3− 6 h−1Mpc at z ∼ 2.5−6.

Similar analysis were carried out by Ouchi et al. (2017) for different purposes. They
studied the clustering of 2000 LAEs at z = 5.7 and 6.6 selected with NB filters from the
Hyper Suprime-Cam Subaru Strategic Program survey (14−21 deg2 area). They derived
the angular correlation function to study the clustering evolution with redshift and con-
clude, after an extensive halo modelling work, that the LAEs probably evolve into massive
super-L* galaxies in the present day universe.

In our case, I have a sample of ∼ 1000 LAEs so I will perform the first spatial clustering
analysis of Lyα selected LAEs by means of the spatial correlation function. As already
explained in Chapter 1, ξ(rp, π) is estimated by counting pairs on a 2D grid of separation
rp and π and the use of one of the estimators previously mentioned. In this master thesis,
I will use the Landy-Szalay estimator (Equation 1.5) and the Davis estimator (Equation
1.6).

In the first place, once the l.o.s. and the radial distances between all possible pairs
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of galaxies have been calculated in the same way as in Chapter 3.1 (see Figure 6.1 for a
scheme to count the LAEs pairs), rp is binned in 11 equally spaced logarithmic bins, from
0.04 to 32.02 h−1Mpc and π is computed in steps of 10 from 10 to 200 h−1Mpc in order to
cover all possible correlated pairs within MUSE fields.

Figure 6.1: (a) Real galaxies in RA (x axis) and DEC (y axis) representation. (b) Real
galaxies pair counting represented by blue arrows from galaxy to galaxy (DD pairs). (c)
Introduction of the random sample of galaxies shown as red ovals. (d) Random galaxies
pair counting represented by red arrows from random to random galaxy (RR pairs). (e)
Random-real galaxies pair counting shown by orange arrows between real and random
galaxies (DR pairs).

Second, during the first run, pairs of real, random and real-random galaxies are counted
as shown in Figure 6.1 with separations from rp = 0.04 to rp = 0.06 h−1Mpc (first rp bin)
and fixed π = 10 h−1Mpc. The next run gives us the pairs with separations comprehended
in the nex rp bin but same fixed π, and so on until all rp bins are covered at the first fixed π
value. Once all rp bins are filled, the process starts again with the second π value, π = 20
h−1Mpc. In this way, I collapse ξ(rp, π) for all π values as a funciton of rp, calculating as
many correlation function curves as bins we have in π.
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Third, the 2 point correlation function ξ(rp, π) is calculated with Equation 1.6 or 1.5
and deprojected with Equation 1.7 to get rid of the redshift space distortions (see Chapter
1). In practice, Equation 1.7 is not integrated to infinite separations between pairs of
galaxies. Instead,

ωp(rp) =

∫ ∞
−∞

ξ(rp, π)dπ = 2

∫ ∞
0

ξ(rp, π)dπ ≈ 2

∫ πmax

0

ξ(rp, π)dπ (6.1)

where πmax is the l.o.s. distance between pairs of LAEs up to where the integration is
performed. It must be chosen in such a way that most correlated pairs DD, RR and DR
are taken into account. However, a too large value would only increase the noise instead of
increasing ωp(rp) (see the black areas of Figure 1.5 that show the noise). Very low values of
πmax do not include most correlated pairs so ωp(rp) would be underestimated. On the other
hand, very high values of πmax account for all the pairs but increase the noise in ωp(rp).
This is due to the fact that at very large l.o.s. distances there are not many correlated
galaxy pairs. Therefore, the number of pairs would be that low that ωp(rp) would barely
increase but the noise would due to the correlation of random pairs of galaxies and not of
real galaxies. Typical πmax values are within the range 20−80 h−1Mpc (see Zehavi et al.
(2002, 2011); Durkalec et al. (2015); Coil et al. (2007)), which are large enough to include
most correlated pairs and give stable results without including too much noise from distant,
physically uncorrelated pairs.

In order to choose the right πmax value, ξ(rp, π) is integrated up to different πmax values
from which one of them will be chosen when ωp(rp) saturates. I have studied ωp(rp) for
20 equally separated values in the range 10 < πmax < 200 h−1Mpc. The ωp(rp) calculated
with the Landy-Szalay estimator and with the Davis estimator are represented on the left
panel of Figures 6.2 and 6.3 for the full rp and π ranges, respectively.

Due to the insufficient number of real LAEs pairs at high rp separations, ωp(rp) does
not show a smooth curve in this region, thus I have chosen the rp range where the curve
does not show so much variation. From the 20 different πmax values, 6 of them have been
chosen to be represented, for simplicity, in the right panel of Figure 6.2 for the Landy-
Szalay estimator and in the right panel of Figure 6.3 for the Davis estimator. In this way,
I will be able to fit ωp(rp) to calculate r0 and γ.

Due to the larger coverage of the 77 fields (see Chapter 2), I will use this sample to study
the spatial clustering. However, the inner 9 fields of the UDF will be excluded because of
the lack of the selection function in this region (without which we cannot create a realistic
random sample of the LAEs there included and we would always have an excess of pairs
due to the longer exposure time which detects more galaxies in this area). Thereby, I will
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Figure 6.2: Left: Projected 2 point correlation function calculated with the Landy-Szalay
estimator as a function of the full transverse distance range between pairs of galaxies, rp.
Right: the same but with the shorter selected rp range. In both cases, the various colors
represent different ωp curves for each different upper integration limit value, πmax were
chosen.

employ a total of 68 fields of MUSE-Wide (77 MUSE-Wide fields - 9 UDF fields) between
3.3 < z < 6 that contain 814 LAEs in an area of 62.9 arcmin2.

In the same way as for the redshift clustering, I used the ΛCDM cosmological model
(ΩM = 0.3,ΩΛ = 0.7 and H0 = 100 km s−1Mpc−1) and, in this case, I considered h =
H0/100 km s−1Mpc−1.

In both cases for the selected rp range, the error bars are Poissonian and were calculated
with an error propagation analysis. For the case of the Landy-Szalay estimator, ωpL,

δωpL =

√
(
∂ξ

∂DD
· δDD)2 + (

∂ξ

∂DR
· δDR)2 + (

∂ξ

∂RR
· δRR)2 =√

(
δDD

RR
)2 + (

−2 · δDR
RR

)2 +
(−DD + 2DR) · δDD

RR2
)2

(6.2)

where δDD, δRR and δDR are the square root of the number of objects in each bin,√
DD,

√
RR and

√
DR, respectively.

In the same way, for the case of the Davis estimator, ωpD,

δωpD =

√
(
∂ξ

∂DD
· δDD)2 + (

∂ξ

∂DR
· δDR)2 =

√
(
δDD

DR
)2 + (

−DD · δDR
DR2

)2 (6.3)



CHAPTER 6. SPATIAL CLUSTERING METHOD 61

Figure 6.3: Left: Projected 2 point correlation function calculated with the Davis estimator
as a function of the full transverse distance range between pairs of galaxies, rp. Right: the
same but with the shorter selected rp range. In both cases, the various colors represent
different ωp curves for each different upper integration limit value, πmax were chosen.

For both estimators, the ωp(rp) has been fitted with a power law, where the equation
1.2 would be its equivalent, to obtain r0 and γ. By using the analytical solution,

ωp(rp) = rp · (
r0

rp
)−γ · Γ(1/2)Γ((γ − 1)/2)

Γ(γ/2)
(6.4)

where Γ(x) is the Gamma function, I have calculated values of r0 = 3.84±0.06 h−1Mpc
when the Landy-Szalay estimator was used and r0 = 3.67± 0.06 when the Davis estimator
was applied in the right panels of Figures 6.2 and 6.3. Both r0 values have been obtained by
fixing γ at 1.8 and 1.9 since they are the standard values used in the literature. Afterwards,
a χ2 analysis has shown that γ = 1.9 gives a better fit of ωp(rp). The errors in the r0 are
1σ errors and are calculated with the minimum squared method from the ωp(rp) fitting.
Both values are in completely agreement with the values calculated with the K estimator
method even if the selected rp coverage in both methods differ.

As it is possible to see in both figures, there is again a clear clustering signal as it was
already shown in the redshift clustering method. In this case, the signal is the excess in
the ωp curves that rise up to 100 (remember that the random clustering is given by ωp = 0
or ξ = 0. Thereby, in a logarithmic scale the random clustering would be at -∞, while in
a linear scale it would be at 0).

The point where the saturation of the projected correlation function occurs is hard
to tell because of the lack of realistic error bars. As far as greater values of πmax are
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considered, the larger the error bars would become. In our case, the error calculation and,
thus, the point at which ωp saturates can only be obtained by hydrodynamical simulations
(see Section 7.2). Therefore, an intermediate πmax value will be selected for now, πmax = 70
h−1Mpc, and justified afterwards. It has also been tested that increasing the number of
random galaxies or using another random sample makes basically no difference to the
results.

Despite the short transverse distances selected, ωp already gives an excess clustering
signal, covering rp values of ∼ 2 h−1Mpc. Typical sizes of DM halos are ∼1−2 h−1Mpc
which means that our ωp tests LAEs that belong to the same DM halo, something that
was never done before.

Moreover, a drop of ωp is seen, which is due to the decrease of correlated galaxy pairs
while rp distances increase. Furthermore, at small rp distances (rp < 0.6 h−1Mpc), the
flattening caused by the Kaiser effect is visible (same effect seen in Figure 1.5 at small rp
values).

However, an intriguing question is why I have chose to integrate up to values of πmax =
70 h−1Mpc. Does it make sense that we consider as a correlated pair two galaxies that are
separated by 70 h−1Mpc? Yes, and the physical answer is given by the peculiar velocities
of the galaxies at these high redshifts (strong FOG effect).

As it was introduced in Chapter 1, when we derive comoving distances from redshifts
we have to take into account the RSD. As it can be seen in Figure 6.4, an overdensity of
galaxies in a real space/distance representation (e.g. blue circle in the left panel of Figure
6.4a) is translated into a much more elongated structure in redshift space (e.g. blue curve
in the right panel of Figure 6.4a) due to the peculiar velocities. This same effect is observed
in Figure 1.5 at small rp distances, where the contours of the two point correlation function
are also elongated along the l.o.s. distance.

Let’s consider the case where we have two galaxies in a z = 4 environment. One
galaxy is moving towards us at z2 = 4.0 and another one is going further away from us
at z2 = 4.15 (redshifted), being both going apart from each other with velocities of 1000
km/s (see Figure 6.4b).

The l.o.s. separation π between both is calculated with equation 3.4, getting π ≈ 100
Mpc = 70 h−1Mpc. However, to know the real distance between the pair of galaxies, the
shift in the l.o.s. distance due to random motions of galaxies must be considered. This
shift in distance is calculated through the shift in the wavelength of the emission lines due
to the peculiar velocities
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Figure 6.4: (a). Left panel: representation of galaxies in real space where the blue circle
shows one of the galaxy overdensities. Right panel: representation of galaxies in a red-
shift space where the elongation of the overdensities are clear. The blue curve shows the
elongation of our chosen overdensity. (b) Pair of galaxies moving apart from each other at
velocities of 1000 km/s, at a l.o.s. separation π and at redshifts 4.0 and 4.15, respectively.

λ′

λ0

=

√
1 + β

1− β
(6.5)

where β = vp/c is the fraction of pecular velocity and the speed of light and λ0 and λ’
are the emitted and the observed wavelengths, respectively. For our example, λ′

λ0
= 1.01.

This same relation can also be expressed as a function of redshift

λ′

λ0

=
1 + z′

1 + z0

=
1 + z0 + ∆z

1 + z0

(6.6)

By using z0 = 4, I calculate ∆z = 0.05. Therefore, the shift in redshift is translated
into shifts in comoving distances of ∼30 h−1Mpc (eq 3.4).

Converting comoving distances to real distances, d, is done by
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d =
π

1 + z
(6.7)

which, for our example, gives real distances of few Mpc. This result is in agreement
with the size of one DM halo (few Mpc), which is also the range of rp that we are able to
cover (see Figures 6.3 and 6.2), and with the correlation length obtained for the sample.

Therefore, the considered πmax values in Figures 6.3 and 6.2 are actually real space
separations of the order of few Mpc, after taking into account the shift in distance caused
by the random motions of the LAEs.

A factor that has not been mentioned or taken into account is the fact that peculiar
velocity dispersions are based on gaussian distributions, on 1σ measurements, which does
not always have to be the case.

As a curiosity exercise since both clustering graphs show very similar curves and max-
imum values of ωp, both estimators have been compared in Figure 6.5.

As it was possible to observe in Figures 6.2 and 6.3, both estimators give very similar
results at intermediate rp values (0.6 < rp < 1.0), obtaining always a slight shift to higher
values in the case of the Landy-Szalay estimator. This is in agreement with the results got
by Zehavi et al. (2002), who showed that both estimators gave very similar results and are
completely consistent within the error bars.

Nevertheless, once rp become too small and specially too large, we approach the limit
of the method, the point at which pairs of galaxies start to be not sufficient to continue
carrying out this method. This is why the more advanced estimator is still able to get
higher values of ωp, while the simpler estimator does not, giving lower values of ωp and
steeply increasing the error bars.

Once again, the errors in Figure 6.5 are calculated by the same error propagation
analysis as above,

δξ =

√
(
∂r

∂ωpL
· δωpL)2 + (

∂r

∂ωpD
· δωpD)2 =

√
(
δωpL
ωpD

)2 + (
−ωpL · δωpD

ω2
pD

)2 (6.8)

where the fraction of both estimators,
ωpL

ωpD
, has been called r for simplicity.

In comparison with other clustering studies, the number of galaxies in our samples is
not so large. Thereby, the computational time between the Landy-Szalay and the Davis
estimator differs in less than one minute. This is why for further studies, I will always use
the Landy-Szalay estimator.
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Figure 6.5: Ratio of the projected 2 point correlation function calculated with the Landy-
Szalay and the Davis estimator as a function of transverse distance between pairs of galax-
ies, rp. Various colors represent different ωp curves for each different upper integration
limit values, πmax.

However, where I observe the greatest computational time saving is by using the redshift
clustering method where no random sample is needed. Therefore, the computational time
is abruptly shorter.

In all cases, this chapter will be used for future goals (see section 7.2). Since the spatial
clustering method was successfully applied for decades, it was used as a comparison and
test of the new redshift clustering method, which is the one on which I have mainly focused
along this thesis. I have shown that it is possible to measure the clustering of MUSE LAEs,
that with both methods I calculate r0 values completely in agreement and that both ωp
tests LAEs that are within the one-halo term, something that is completely new in the
high redshift galaxy domain.



Chapter 7

Conclusion

7.1 Summary

Studying the distribution of LAEs in the Universe reveals how the structure of the Universe
looked at 3 < z < 6. Galaxy clustering analysis constrain the size and population of
the dark matter (DM) halos, tests the cosmological models and shows evidence of the
fluctuations in the early Universe. By studying the clustering evolution of Lyman Alpha
Emitters (LAEs) through different epochs, the galaxy formation and evolution theories are
rehearsed.

Since the first goal of this master thesis was to reproduce the results shown in Diener
et al. (2017), I have analyzed the first 24 fields of MUSE-Wide and afterwards, I have
extended the study to the full samples of MUSE-Wide and MUSE-Deep. The number
of LAEs contained in each survey is 234, 947 (814 in 68 fields of MUSE Wide) and 757,
covering areas of 22.2 arcmin2, 63.83 arcmin2 (62.9 arcmin2 for the 68 fields) and 8.32
arcmin2, respectively. The redshift coverage of all samples comprehends 3 < z < 6, being
z = 4.04, z = 4.07 and z = 4.14 the mean redshift of each survey, respectively.

Due to the special MUSE data, the large redshift range and the limited angular cover-
age, I explored different possibilities to measure the clustering of the LAEs. Because of the
type of data, the samples are ideal to perform the radial clustering method. I have studied
the redshift clustering through the K30,60

0,30 and K25,50
0,25 estimators and obtained correlations

lengths of r0 = 2.7+0.3
−0.4 and r0 = 2.6+0.2

−0.2 in the MUSE-Wide and MUSE-Deep samples, re-
spectively. The slope of the K estimator was γ = 1.8 in both cases and it yields consistent
results in both regions of the sky. The uncertainties in the estimated correlation lengths
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are ±13% and ±8%, respectively, being both lengths in agreement with the values in the
literature at similar redshifts.

Afterwards, the method has been studied in detail by creating a realistic random sample
of the LAEs contained in the MUSE surveys. The selection and luminosity functions and
the footprints of MUSE-Wide survey have been taken into account to develop a realistic
random sample of LAEs on which the redshift clustering can be tested. As expected, the K
estimator provided values consistent with no clustering after the method was ran 100 times
and averaged. This analysis, apart from ensuring that we are not biased, also offered a
better understanding on how realistic Poisson errors are. In all cases, the errors introduced
by the method itself are much smaller than the Poisson errors calculated.

I also studied the clustering dependence with several physical properties. Such was
the case of redshift, Lyα luminosity, stellar mass contained in the galaxy, and equivalent
width of the Lyα emission line. Despite that the errors bars were quite large to be able
to say precisely which subsample cluster stronger, clear tendencies were seen in various
cases. The K estimator seems to give higher clustering trends for LAEs as the redshift
increases. In this way, we can connect different observed populations of LAEs at different
epochs which, combining it with theoretical models for the DM halos growth, one can say
that galaxies formed early on in more overdense regions of the Universe.

Even more suggestive trends are seen when the clustering is studied as a function of
luminosity. More luminous LAEs seem to cluster stronger than fainter LAEs, residing in
more massive halos. For the rest of the cases (stellar mass and equivalent width) the error
bars are too large to be able to distinguish between the clustering of LAEs at low and
high values of both properties. However, I am hopeful that future error calculations (see
Section 7.2) will bring light to help to solve this issue.

The results obtained in this thesis are consistent with the idea that LAEs are the
progenitors of the galaxies seen in the local Universe, including Milky Way type galaxies.
Since I found that luminous LAEs very likely cluster stronger than fainter LAEs, luminous
LAEs may be the protoclusters, the densest regions in the early Universe that evolve to
the massive galaxy clusters that we observe today.

In order to asure the reality of the clustering signal obtained with the radial cluster-
ing method, I have extended the thesis to use the traditional spatial clustering method
in the MUSE-Wide sample. The two most common estimators, Landy-Szalay and Davis
estimators, were applied to calculate the projected correlation function, giving both ba-
sically the same results. Apart from the appreciation of a clear clustering signal and a
total coverage of the one-halo term (ωp gives a smoothed clustering signal up to rp = 1.4
h−1Mpc), the correlation lengths calculated from both estimators, r0 = 3.84±0.06 h−1Mpc
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and r0 = 3.67± 0.06 h−1Mpc, agree completely with the values obtained with the redshift
clustering method. In this case, the best fit for the slope of the correlation function was
γ = 1.9.

In conlusion, LAEs provide a great insight into the formation and evolution of the
galaxies in our local Universe. By studying their clustering in 3 < z < 6, we were able to
study for the first time the one-halo term of our LAEs samples by means of the projected
two point correlation function, to test different and new methods of galaxy clustering,
obtaining their correlation lengths and slopes, to study the dependency of LAEs clustering
as function of different physical properties, to connect galaxies from the end of the epoch of
reionization to close to the peak of cosmic star formation epoch and to reproduce realistic
random samples of the LAEs detected by MUSE. On the process, we are able to trace
the large scale structure of the Universe, test galaxy formation and evolution theories,
constrain the parameters of cosmological models, determine the DM halo populations,
their distribution, and the DM halo masses that contain the LAEs of our samples.

7.2 Future work

Galaxy clustering is a field that is experiencing a great development since the last few
decades. The increase of the precision in the observations drive this progress. The larger
quantities of data that nowadays is possible to collect provide the best framework to study
galaxy clustering and, therefore, the formation and evolution of the large-scale structure
of the Universe.

One of the first things that needs to be done as a continuation of this work is related to
the error calculations. As discussed in previous sections, all error bars along this thesis were
poissonian. This should not be the case because all data points in the plots are correlated.
Thereby, the errors will be calculated from a comparison with simulations. The Universe
will be represented in a box of certain size and will be populated with galaxies in the same
redshift range as our LAEs. Hundreds of light cones will scan the Universe box and, from
each of them, ωp will be calculated. From the comparison of our clustering results and the
mean ωp calculated from those simulations, more representative error bars will be achieved.
Hopefully, this improvement in the errors will allow us to precisely study how LAEs cluster
as a function of different physical properties, to determine exactly where ωp satures and to
know the exact rp range that we can use to study the clustering in our samples.

The next step is one of the most important results provided by clustering measurements,
calculating the typical mass of the DM haloes where the galaxies reside. In order to
calculate them, a halo occupation distribution (HOD) analysis must be carried out.
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The clustering of galaxies does not necessarily have to follow the same path as the
clustering of the DM where they are contained. The bias factor constrains the fact that
the spatial distribution of baryons differ from that of DM, giving a relation between the
spatial distribution of galaxies and the underlying DM.

The bias factor can be calculated by comparison to cosmological simulations. Using
a certain cosmological model, the evolution of the clustering of DM is predicted with
cosmological N-body simulations. Performing a HOD modelling for the one-halo and two-
halo terms (pairs of galaxies belonging to the same parent halo, 1−2 h−1Mpc, or to different
ones) and adding both terms together, results in a correlation function that mainly follows
a power law. This power law is then compared to the clustering power law of our observed
LAEs through which I will acquire the bias.

After this comparison, the galaxies will be assumed to be in halos of a given mass with
the same bias factor as in the simulations, which will allow me to calculate the typical DM
halo masses.

These proceedings depend on the number of galaxies in each halo (the halo occupation)
and on the location on the galaxies in the halo. In general, it is assumed that one galaxy is
at the center of the halo (central galaxy), while the rest are distributed around it (satellite
galaxies). By carrying out a HOD analysis, the probability that a halo contains x number
of galaxies will be obtained.

Performing this kind of analysis will provide very interesting results. The mass of
the DM halo will be calculated, simulations will provide a good comparison to check our
previous results and, by combining the bias with the galaxy number density, I will constrain
the fraction of halos with certain galaxy types. Therefore, I will know the distribution of
central and satellite galaxies within the DM haloes of our LAEs.

On the other hand, studying the clustering of other type of galaxies is of huge interest.
Data already exists (provided by MUSE) to perform this analysis at lower redshifts. Such
is the case of the O[II] emitters present in MUSE-Wide, whose clustering will be studied.

Nevertheless, there are several improvements that do not depend on me, they will come
hand in hand with new observational data. Extensive spectroscopic redshift surveys will
bring light to the clarification of the nature and the properties of the large-scale structure.
The shape and type of structures in the galaxy distribution will be able to be revealed.

• MUSE is the deepest spectroscopic survey ever performed, with 10 and 30 hours
depth provides more than 1600 redshifts. However, an extension of the project is
approaching and new areas of the sky will be covered. Moreover, in a farther future,
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MUSE Blue will cover the blue part of the spectrum (370-600 nm), will detect many
more galaxies, and will provide a larger area per field (1.4 x 1.4 arcmin2) than the
coverage available today (1 x 1 arcmin2).

• The Hobby-Eberly Dark Energy Experiment (HEDTEX) will detect more than one
million LAEs in the redshift range of 1.7 < z < 3.5. It will allow us to study the
clustering at lower redshifts and have the complete evolution of LAEs through all
epochs. The spectograph (VIRUS) will scan more than 200 deg2 in 110 observing
nights with a wavelength range of 340 − 565 nm.

• The upcoming James Webb Space Telescope will detect galaxies primarily in the
infrared region of the electromagnetic spectrum by detecting the Lyα, Hα and He II
lines among others. It will cover redshifts in the range 1 < z < 6 with both imaging
and spectroscopy, providing a great opportunity to study the clustering evolution of
LAEs.

• The Taipan survey (multi-object spectroscopic survey scanning the wavelength range
of 370 < λ < 870 nm) will detect millions ¡f galaxies at much lower redshifts (z < 0.3)
in the whole southern sky. This survey will be able to measure H0 with 0.9% precision
and the growth rate of structure with 5% which will, therefore, improve the precision
of clustering measurements. This survey will provide the most extensive map of mass
distribution and motions from peculiar velocities of the southern hemisphere.

In this way, these large samples of low to high redshift galaxies will trace the Universe
structure and its evolution with time, as well as, its galaxy formation. Currently, guessing
which of the current models will success with the new data cannot be predicted.

Therefore, at the end of this future work I will be able to show how LAEs cluster
in redshift space (redshift clustering), how they cluster spatially (spatial clustering) in
larger and more representative samples of the Universe with proper error bars, how much
stronger the LAEs cluster with respect to the DM (bias factor) and how much is the typical
mass of the DM haloes of LAEs. From all these various results, apart from constraining
comological parameters, galaxy evolution models and connecting galaxy populations at
different epochs, the way LAEs cluster and the formation and evolution of LAEs within
their parent DM haloes will be better understood.
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Deutsche Zusammenfassung

Das Studium der Verteilung von LAEs im Universum offenbart uns wie das Universums
von 3 < z < 6 strukturiert ist. Durch die Analyse der Galaxiencluster/anhäufungen
kann man ermitteln, wo Materieüberdichten liegen, die Größe und Population der Dunkle-
Materie-Halos einschränken, kosmologischen Modelle testen und Schwankungen im frühen
Universum aufzeigen. Außerdem gibt uns die Untersuchung der Cluster-Entwicklung in ver-
schiedenen kosmologischen Epochen die Möglichkeit, gängige Galaxienbildung- und Evo-
lutionstheorien zu überprüfen.

Das erste Ziel dieser Masterarbeit war es, die in Diener et al. (2017) gezeigten Ergeb-
nisse zu reproduzieren, analysierte ich die ersten 24 Felder von MUSE-Wide und und
nachdem ich die Studie auf die vollständige MUSE-Wide-Survey und MUSE-Deep-Survey
ausgedehnt habe. Die Anzahl der LAEs beträgt 234, 947 (814 in 68 Felder) und 757 LAEs
(Lyman Alpha Emitter). Dabei wurden Bereiche von 22.2 arcmin2, 63.83 arcmin2 (62.9
arcmin 2 für die 68 Felder) und 8.32 arcmin2. Die Rotverschiebungsabdeckung aller Stich-
probe umfasst 3<z<6, mit z = 4.04, z = 4.07 und z = 4.14 die mittlere Rotverschiebung
jeder Stichprobe.

Aufgrund der speziellen MUSE-Daten, des großen Rotverschiebungsbereichs und der
kleinen Winkelabdeckung habe ich verschiedene Möglichkeiten zur Messung der Clustering
der LAEs ausprobiert. Aufgrund des Datentyps sind die Proben ideal für die radiale
Clustering-Methode. Ich studierte das Rotverschiebungs-Clustering anhand des Schätzers
K30,60

0,30 und ermittelte die Korrelationslängen von r0 = 2.7+0.3
−0.4 und r0 = 2.6+0.2

−0.2 in den
MUSE-Wide und MUSE-Deep Stichproben. Die Steigung des K-Schätzers was γ = 1.8
und liefert in beiden Himmelsbereichen konsistente Ergebnisse. Die Unsicherheiten in den
geschätzten Korrelationslängen sind jeweils ±13% und ±8%, wobei beide Längen mit den
Literaturwerten bei ähnlichen Rotverschiebungen übereinstimmen.

Anschließend wurde die Methode detailliert untersucht, indem eine realistische Zu-
fallsstichprobe der in den MUSE-Umfragen enthaltenen LAEs erstellt wurde. Die Auswahl
und Helligkeitsfunktionen und Fußabdruck der MUSE-Wide wurden berücksichtigt, um
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eine realistische Zufallsstichprobe von LAEs zu entwickeln, an denen das Rotverschiebungs
Clustering getestet werden konnte. Wie erwartet lieferte der K-Schätzer Werte, die mit
null Clustering übereins- timmen, nachdem die Methode 100 mal ausgeführt und gemittelt
wurde. Diese Analyse bot nicht nur die Gewähr, dass unsere Messerergebnisse nicht ver-
falschtsind, sondern auch ein besseres Verständnis darüber, wie realistisch Poisson-Fehler
sind. In allen Fällen sind die durch die Methode selbst eingeführten Fehler viel kleiner als
die berechneten Poisson-Fehler.

Ich untersuchte auch die Clusterabhängigkeit mit verschiedenen physikalischen Eigen-
schaften: die Rotverschiebung, der Sichtbare Galaxienmasse, der Leuchtkraft der Lyα und
der Equivalentbreite der Emissionslinie von Lyα. Obwohl die Fehlerbalken zu groß waren
um eine klare Aussage über die Clusteringstärke einzelner Unterstichproben zu machen,
konnten in verschidenen Fällen deutliche Tendenzen beobachtet werden. Der K-Schätzer
scheint mit zunehmender Rotverschiebung höhere Cluster-Trends für LAEs hinzuweisen.
Auf diese Weise können wir verschiedene beobachtete Populationen von LAEs in verschiede-
nen Epochen miteinander verbinden. In Kombination mit theoretischen Modellen des
Halowachstum der dunklen Materie (DM) kommen wir zu dem Schluss, dass sich Galaxien
früh in sehr überdichten Regionen des Universums gebildet haben.

Noch deutlichere Trends werden beobachtet, wenn wir das Rotverschiebungs-Clustering
als Funktion der Helligkeit untersuchen. Hellere LAEs, die massiveren Halos wohnen,
scheinen sich stärker gruppieren als licht LAEs. Für den Rest der Fälle (Galaxienmasse
und Equivalentbreite) sind die Fehlerbalken zu groß, um zwischen dem Clustering von
LAEs bei niedrigen und hohen Werten beider Eigenschaften unterscheiden zu können. Ich
hoffe jedoch, dass die neuen Fehlerberechnungen (siehe Abschnitt 7.2) zur Lösung dieses
Problems beitragen können.

Die Ergebnisse dieser Arbeit zeigen, dass LAEs Vorgänger der verschiedenen Arten
von Galaxien sein können, die im nahen Universum zu sehen sind, einschließlich Galax-
ien ähnlich der Milchstraße. Da, wie herausfand, helle LAEs sich stärker als licht LAEs
gruppieren, könnten helle LAEs Protocluster sein, die dichtesten Regionen im frühen Uni-
versum, die sich zu den massiven Galaxienhaufen entwickeln, die wir heute beobachten.

Um die Richtigkeit des mit der Radialen-Clustering-Methode erhaltenen Clustersig-
nals sicherzustellen, habe ich die Masterarbeit erweitert, um die traditionelle räumliche
Clustering Methode in der gesamten MUSE-Wide-Survey zu verwenden. Die beiden am
häufigsten verwendeten Schätzer, die Schätzer von Landy-Szalay und Davis, wurden ver-
wendet, um die projizierte Korrelationsfunktion zu berechnen, wobei beide grundsätzlich
die selben Ergebnisse liefern. Abgesehen von der Einschätzung eines eindeutigen Clus-
tersignals und einer vollständigen Abdeckung des Einhalo-Terms (ωp gibt ein positives
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Signal bis zu rp = 1.4h−1Mpc), die von beiden Schätzern berechneten Korrelationslängen
stimmten vollständig mit den Werten, die mit der Rotverschiebungs-Clustering-Methode
erhalten wurden. In diesem Fall war die beste Anspassung für die Steigung der Korrela-
tionsfunktion γ = 1.9.

Zusammenfassend bieten LAEs einen großen Einblick in die Entstehung und Entwick-
lung der Galaxien im nahen und fernen Universum. Indem wir deren Clustering in eines
Rotverschiebung von 3<z<6 untersuchen, konnten wir zum ersten Mal den Ein-Halo-Term
unserer LAEs anhand der projizierten Korrelationsfunktion untersuchen, verschiedene und
neue Methoden des Clusterings testen, ihre Korrelationslängen und Steigungen ermit-
teln, die Abhängigkeit von Galaxien Clustering als Funktion verschiedener physikalis-
cher Eigenschaften untersuchen, Galaxien vom Ende der Epoche der Reionisation bis zum
Höhepunkt der kosmischen Sternentstehung miteinander verbinden und realistische MUSE
LAEs Stichproben erstellen. Auf diesem Weg sind wir in der Lage, die großräumige Struk-
tur des Universums zu verfolgen, Galaxienbildungs und Evolutionstheorien zu testen und
die Parameter kosmologischer Modelle einzuschränken. Insbesondere können wir die DM-
Halopopulationen, ihre Verteilung und die DM-Halomassen bestimmen, die die LAEs un-
serer Stichprobe enthalten.
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APPENDIX

#Zf, RA and DECf are the redshifts, right ascentions and declinations,

#directly read from MUSE catalogues.

from __future__ import division

from astropy.utils.data import get_pkg_data_filename

from astropy.table import Table

from astropy.io import fits

import matplotlib.pyplot as plt

import numpy as np

import math

from astropy.cosmology import FlatLambdaCDM

cosmo = FlatLambdaCDM(H0=70, Om0=0.3)

import itertools

import matplotlib

#Right Ascension correction

RA_offset = (RA - np.mean(RA))*np.cos(DECf*math.pi/180)

RAf = np.mean(RA) + RA_offset

#Radial distance calculation

zij = np.array([])

co = np.array([])

cos = np.array([])

for k, zk in enumerate(Zf):

for l, zl in enumerate(Zf[k+1:]):

co = np.append(co, cosmo.comoving_distance(zk).value)

cos = np. append(cos, cosmo.comoving_distance(zl).value)

zij = np.append(zij, abs(co-cos))
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#Angular separation calculation

phi = np.array([])

d = np.array([])

r = np.array([])

for i, deci in enumerate(DECf):

d = np.append(d, deci-DECf[i+1:])

for j, rai in enumerate(RAf[i+1:]):

r = np.append(r, RAf[i]-rai)

phi = np.append(phi, np.sqrt((r)**2+(d)**2)*math.pi/180)

#Transverse distance calculation

rij = np.array([])

pairs = itertools.combinations(Zf, 2)

rzav = np.array([])

for pair in pairs:

rzav= np.append(rzav, cosmo.comoving_distance((pair[0] + pair[1])/2).value)

rij = np.append(rij, rzav * phi )

#K estimator calculation, the l.o.s. distance selection is from 30 to 60

kab = np.array([])

bins = np.arange(0,12,1.5) #MUSE-Wide limit of the field of view

err = np.array([])

binp = np.array([])

for k, bini in enumerate(bins):

idxtrans = (rij >= bini) & (rij < (bini+1.5))

idxl.o.s.1 = (zij > 0) & (zij < 30)

idxl.o.s.2 = (zij > 0) & (zij < 60)

kab = np.append(kab, sum(idxtrans & idxlos1)/sum(idxtrans & idxlos2))

err = np.append(err, math.sqrt(sum(idxtrans & idxlos1))/sum(idxtrans & idxlos2))

binp = np.append(binp, bini + 1.5/2)

#K fit

r0val = np.arange(1., 5., 0.1)

xi_ij_a = np.array([])

xi_ij_b = np.array([])

err1 = np.array([])

k1 = np.array([])
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idx = (rij < 5.)

transin = rij[idx]

for j, r0valj in enumerate(r0val):

for h, transinh in enumerate(transin):

integ1 = integrate.quad(lambda Z: (math.sqrt(transinh**2 + Z**2) /

r0valj)**(-1.8),30,60)[0]

integ2 = integrate.quad(lambda Z: (math.sqrt(transinh**2 + Z**2) /

r0valj)**(-1.8),0,30)[0]

xi_ij_a = np.append(xi_ij_a, (1/(60-30)) * integ1)

xi_ij_b = np.append(xi_ij_b, (1/(30-0)) * integ2)

k1 = np.append(k1, ((30-0)*sum(1+xi_ij_b[j*len(transin):]))/((30-0)*

sum(1+xi_ij_b[j*len(transin):])+(60-30)*sum(1+xi_ij_a[j*len(transin):])))

kmeasured = sum(idx & idxlos1)/sum(idx & idxlos2)

err1 = np.append(err1, math.sqrt(sum(idx & idxlos1))/sum(idx & idxlos2))

difference = np.abs(k1-kmeasured)

differencelow = np.abs(k1-(kmeasured-err1))

differenceup = np.abs(k1-(kmeasured+err1))

min_dif = np.argmin(difference)

r0opt = r0val[min_dif]

min_dif_up = np.argmin(differenceup)

r0up = r0val[min_dif_up]

min_dif_low = np.argmin(differencelow)

r0low = r0val[min_dif_low]

print(’The ideal r0’, r0opt)

print(’Upper limit’, r0up)

print(’Lower limit’, r0low)


	Introduction
	Large Scale Structure of the Universe
	Galaxy Clustering
	Angular clustering method
	Spatial clustering method

	Lyman Alpha Emitters
	Detection techniques
	Narrow band selection technique
	Spectrographs

	MUSE spectrograph
	Key aims of this work

	MUSE samples
	MUSE-Wide survey
	MUSE-Deep survey

	Redshift clustering method
	MUSE-Wide 24 fields
	MUSE-Wide 69 fields
	MUSE-Deep
	Studying the K estimator in detail

	Analysis of a random sample of galaxies
	Clustering dependence on physical properties
	Spatial clustering method
	Conclusion
	Summary
	Future work

	Bibliography
	Deutsche Zusammenfassung
	Eidesstattliche Erklärung
	APPENDIX

