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Abstract

Cosmic rays are pervasive in different astrophysical environments, where they significantly
contribute to the emerging dynamics. They interact predominantly with the ambient medium
by small-scale electromagnetic waves, which loose energy through wave-damping processes
and heat the surrounding plasma. As a dilute population of charged particles with high ener-
gies, their transport cannot described by ordinary hydrodynamic. The scattering between cos-
mic rays and Alfvén waves enables us to reduce the full kinetic dynamics of the bulk of cosmic
rays into a special hydrodynamical framework. Furthermore, as the scattering by Alfvén waves
isotropizes the cosmic ray distribution in the rest frame of the Alfvén waves, they are effectively
transport with the same velocity as the waves. This effect is called cosmic ray streaming and is
described in the energy equation of cosmic ray hydrodynamics. Current numerical solutions of
this equation and in particular the implementation of this effect struggle to correctly capture this
effect in a consistent manner. In this work we develop a new hydrodynamic transport theory,
which adds the flux of cosmic rays as a new dynamical variable. We consider both, pitch-angle
scattering and momentum diffusion as realizations of the scattering between cosmic rays and
Alfvén waves. This allows us to describe the evolution of cosmic ray energy with a formula-
tion that is Galilean-invariant and energy conserving. We highlight similarities and differences
between our derivation and that of radiation hydrodynamics because both resemble each other
very closely. The inclusion of Alfvén waves as a new fluid allows us to describe cosmic ray
hydrodynamics in a self regulated manner. We demonstrate this using numerical simulations
of a few explanatory scenarios.

Zusammenfassung

Kosmische Strahlung ist in verschiedenen astrophysikalischen Umgebungen allgegenwertig,
wo sie signifikant zur entstehenden Dynamik beiträgt. Sie interagiert überwiegend mittels
kleinskaliger elektromagnetischer Wellen mit dem umgebendem Medium, welches durch Wel-
lendämpfungprozesse geheizt wird. Als eine verdünnte Population von geladenen Partikeln
mit hoher Energie kann ihr Transport nicht durch die übliche Hydrodynamik beschrieben wer-
den. Die Streuung kosmischer Strahlen mit Alfvén-Wellen ermöglicht es uns, die volle kinetis-
che Dynamik der Mehrheit der kosmischen Strahlung in einem speziellem hydrodynamischem
Bild zu beschreiben. Da die Streuung die Verteilung der kosmischen Strahlung im Ruhesystem
der Alfvén-Wellen isotropisiert, werden diese effektiv mit derselben Geschwindigkeit trans-
portiert, wie die Wellen. Dieser Effekt wird Strömung kosmischer Strahlen genannt, und ist
in der Energiegleichung kosmischer Strahlen modelliert. Gegenwertige numerische Lösungen
dieser Gleichung und insbesondere die Implementationen dieses Effekts haben große Prob-
leme, diesen Effekt korrekt und konsistent zu erfassen. In dieser Arbeit entwickeln wir eine
neue hydrodynamische Transporttheorie, welche den Fluss kosmischer Strahlen als eine neue
dynamische Variable hinzufügt. Wir berücksichtigen Anstellwinkelstreuung und Impulsdiffu-
sion als Realisierung der Streuung zwischen kosmischen Strahlen und Alfvénwellen. Dies er-
laubt es uns, die Energiedynamik kosmischer Strahlung Galilei-invarant und Energie erhaltend
zu beschreiben. Wir heben Gemeinsamkeiten und Unterschiede zwischen unserer Herleitung
und derer der Strahlungshydrodynamik hervor, da beide eine große Ähnlichkeit besitzen. Die
Aufnahme der Alfvén-Wellen als ein neues Fluid, erlaubt uns die Hydrodynamik kosmischer
Strahlen in einer selbstregulierten Weise zu beschreiben. Wir zeigen dies durch numerische
Simulationen einiger beispielhafter Szenarien.





Most of the presented results are based on Thomas and Pfrommer (2018), which was sub-
mitted to MNRAS. I use the present work to explain the used arguments in greater detail and
to add omitted calculations, especially in the appendix.
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1 Introduction
Cosmic rays (CRs) are charged particles with large kinetic energies (MeV to EeV). They con-
stitute a non-thermal collisionless particle population that interacts with their surroundings pre-
dominantly through electromagnetic fields. As in most astrophysical scenarios the assumptions
of magnetohydrodynamics (MHD) and its refinements are applicable, they mostly influenced
by a large-scale magnetic field. This field and their charged nature forces them to spiral around
field lines. In a collective effect CRs can amplify additional small-scale Alfvén waves when-
ever CRs deviate from isotropy (Lerche, 1967; Kulsrud and Pearce, 1969). These waves scatter
the CR efficiently and thus alter the propagation of CRs. The mere scattering of CRs causes
them to spatially diffuse in the same manner as collision between molecules causes Brown-
ian motion. In contrast to Brownian motion, diffusion is anisotropic and directed along the
magnetic field lines because of the CRs’ gyro motion. Furthermore, the scattering by Alfvén
waves causes the CRs to be essentially transported with the waves rather than with the sur-
rounding gas. This effect is called CR streaming and is described in the energy equation of
CR hydrodynamics (CRHD) (Zweibel, 2017). Another side-effect of the interaction between
CRs and Alfvén waves, a manifestation of the second order Fermi process (Fermi II), can de-
or accelerate CRs. Therefore, there is a constant exchange of energy between CRs and Alfvén
waves as long as the later are amplified. In contrast to the CRs themselves, these Alfvén waves
are capable of efficiently interacting with the thermal medium and heat it via various plasma
kinetic effects. This heating and the pressure provided by CRs influence different astrophysical
environments.

The first order Fermi (Fermi I) process accelerates particles at collisionless magnetized
shocks. A few thermal particles get rapidly scattered on both sides of the shock and gain en-
ergy by an effectively recoil-free scattering event at the other (approaching) side, which causes
a subsequent crossing of the shock front. This scattering-crossing cycle repeats itself until the
scattered particles eventually exit this process. They now have higher energy as the surrounding
pool of ordinary thermal particles. Since this process can be mapped onto a diffusion process,
it is commonly referred to as diffusive shock acceleration (DSA). The presence of CRs at the
shock can modify the local shock structure and even introduce a CR mediated shock precursor
(Drury and Völk, 1981; Völk and McKenzie, 1981; McKenzie and Bond, 1983; Jones, 1993).

On the largest scales, these shocks can be situated within relativistic jets from active galactic
nuclei or are situated between jets and the intracluster medium (ICM). Once cooling gas falls
onto a super-massive black holes, relativistic jets can drive outflows from the center of a galaxy
cluster into the ICM. The produced CR are abundant enough such that the subsequent heating
of the ICM by Alfvén waves can explain the high temperatures observed even though radiative
cooling should be very effective (Guo and Oh, 2008; Wiener et al., 2013; Jacob and Pfrommer,
2017).

In the evolution of disk galaxies CRs have an important role. There, the main sources of CRs
are shocks of supernova remnants (SNRs) (Blasi, 2013), wind termination shocks (Seo et al.,
2018), and clusters of massive stars (Aharonian et al., 2018). After the latter form or the first
supernovae (SNs) explode, CRs are transported along the toroidal magnetic field of the galaxy.
As the density of CRs increases and the magnetic field is amplified by a galactic dynamo, the
Parker instability buoyantly rises overcritical bubbles of CRs from the galactic plane (Parker,
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CHAPTER 1. INTRODUCTION

1966; Rodrigues et al., 2016). This tears the toroidal magnetic field apart and enables CRs to
escape into the circumgalatic medium (CGM). In this process, gas is entrained by CRs and is
either expelled from or falls back unto the galaxy in fountain flows (Uhlig et al., 2012). During
the further evolution of a typical galaxy, SN and wind bubbles of massive star cluster open up
the magnetic fields perpendicular to disk. CRs moving along those field lines build up pressure
support against gravity and hinder gas from collapsing. This suppresses star formation and can
lunch powerful galactic winds (Breitschwerdt et al., 1991, 1993; Hanasz et al., 2013; Booth
et al., 2013; Salem and Bryan, 2014; Recchia et al., 2016; Girichidis et al., 2016; Wiener et al.,
2017).

Aside of localized versions of the above global galactic effects, low-to-intermediate energy
CRs (. 1GeV) contribute to the dynamics of the interstellar medium (ISM) trough their ion-
ization capabilities. Since dense cold molecular clouds are effectively shielded against UV ra-
diation, CRs are one of main sources of ionization in those environments (Padovani and Galli,
2013). The altered chemistry changes the initial conditions of star formation. In consequence,
permeating CRs can even affect star formation in CR dominated ultra luminous infrared galax-
ies on a global level (Papadopoulos et al., 2011).

Inside the solar system the gyroradii of CRs below ∼10 GeV are small enough to be affected
by interplanetary magnetic fields and the solar wind. This solar modulation alters the properties
of the low-energy CR distribution, such that terrestrial and most of the space-bound CR flux
measurements do not reliably probe the properties of CRs in the galactic environment (Potgi-
eter, 2013). The outermost boundary for those effects is expected to be at 100-150 AU, outside
of the bow wave/heliopause of the solar wind. Currently the most promising prospect for in
situ measurements of the interstellar flux of CRs is the Voyager I probe, which currently travels
at a distance of 142 AU away from the Sun. In 2012, Voyager I saw an increase in Galactic and
a decrease in heliospheric particle fluxes (Cummings et al., 2016). Since then, Voyager I likely
observes low-energy Galactic CRs from our local environment in the ISM. The CR subsystems
onboard of the probe are still functional and expected to be so for a few years. Comparing the
ground/orbital CR measurements with those of Voyager allows to gain insight into the galactic
transport of CRs (Aloisio et al., 2015). We here explicitly exclude a discussion of CR dynamics
inside the solar system from our work and focus on those in the ISM, CGM, and ICM.

To understand the emerging dynamics in all those environments a precise description of CR
transport is crucial. Current attempts to numerically model these systems struggle to capture
CR diffusion and streaming in a numerical consistent, stable, and efficient way. Standard finite-
volume methods for simulating CR streaming fail due to a numerical instability. A proposed
alternative is to regularize the critical terms (Sharma et al., 2010). This regularization cast the
energy equation of CRHD into a nonlinear anisotropic diffusion equation. Numerical imple-
mentation of this differential equation type is possible but computationally expensive (Sharma
et al., 2010; Meyer et al., 2014; Vaidya et al., 2017, R. Pakmor private communication). To
overcome the above problems, Jiang and Oh (2018) propose to describe CR transport with
equations similar to those of radiation hydrodynamics (RHD) but miss to give a derivation for
their approach. They show numerically that their ad-hoc ansatz is indeed capable of mimicing
CR transport. Here, we pick up and refine their idea, in order to develop a new macroscopic
transport theory for CRs, which captures the diffusion and streaming effects in a self-regulated
framework. We achieve this by deriving a new equation for the flux of CR energy and coupling
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both CR energy and flux equations to the energy equations of Alfvén waves. Both are linked
through approximative descriptions of pitch-angle scattering and the energy transfer between
both participants. Our new formalism restores the old CR transport equation in the asymp-
totic limit. As the overall derivation is highly inspired by the corresponding way to derive the
equations of RHD, we frequently highlight similarities and show up differences between both
CRHD and RHD.

We use Heaviside Lorentz units throughout this work and denote ab as the dyadic product of
vectors a and b.
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2 Preliminaries
We recall some of the required basic theory concerning the motions of charged particles and
MHD known from textbooks. See for example Sturrock (1994), Kulsrud (2004), and Zank
(2014).

2.1. Motion of charged particles

Consider a particle of charge q subject to electromagnetic forces provided by a large-scale mag-
netic field B, small-scale magnetic field δB, and small-scale electric field δE. We postpone
the definition of the differences between large and small scales. The particle position x, its ve-
locity 3, and its momentum p change according to the relativistically-correct form of Newton’s
equations:

dx
dt

= 3, (2.1)

dp
dt

= q
[
δE +

3

c
× (B + δB)

]
. (2.2)

Both momentum and velocity of the particle are linked by p = γmv, where γ = 1/
√

1 − 32/c2

is the Lorentz factor of the particle.
Let us restrict this situation further and assume that the small-scale fields have small ampli-

tude: δB� B, δE ∼ 0 and that the large-scale magnetic field is aligned with the z axis B = Bz.
In this case, the forces exerted by these fields are small perturbations compared to the forces
provided by B. We can solve the equations of motion to first order by ignoring the contribution
of the small-scale fields. The solution is the

unperturbed orbit of a particle:



x(t) =
3
√

1 − µ2

Ω
sin(Ωt),

y(t) =
3
√

1 − µ2

Ω
cos(Ωt),

z(t) = 3µt,

(2.3)

where

Ω =
qB
γmc

(2.4)

is the particle’s gyrofrequency and the projection of the velocity onto the magnetic field direc-
tion µ is called the pitch-angle. The particle’s speed 3, Ω, and µ are constants of motions in the
unperturbed orbit. This trajectory is clearly oversimplified but nevertheless instructive: the par-
ticle moves in a helical motion around the large-scale magnetic field. The elapsed time during
one complete gyration is given by 2π/Ω. The typical length scale associated with the gyromo-
tion is 3 Ω and of the order 0.25 AU for 1GeV protons under ISM conditions (B = 1 µG).
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We can relax some of our assumptions: consider a magnetic field that slowly changes com-
pared to the gyromotion, meaning that the time and length scale on which B changes are larger
than many gyrotimes and -radii. Then, the true particle orbit must change in comparison to
the unperturbed orbit in (2.3). Since these changes are slow, the particle will approximately
remain in a helical motion even if B differs from Bz. Consequently, the definitions of Ω and
µ remain useful but we have to define them locally: the new orbits are fully described by the
local gyro-frequency qB(x, t)/(γmc) and the local pitch-angle µ = 3 · b, where b = B/B is the
direction of the magnetic field.

We can even include the small-scale electromagnetic fields: assume that these fields vary on
scales comparable or smaller than the respective values of the gyromotion and are of stochastic
nature. Then a single particle will see permanently varying fields. Consequently, these fields
will change the particle’s Ω and µ over the course of its motion. However, on scales much
larger then the gyromotion, the ensemble of particles will not be affected because the ensemble-
averaged (〈·〉) small-scale fields and hence the associated forces vanish:

〈δB〉 = 〈δE〉 = 0. (2.5)

To be mathematically more precise, we can define the large-scale fields as the mean of the total
fields and use both terms interchangeably:

B = 〈Btotal〉 = 〈B + δB〉, (2.6)
E = 〈Etotal〉 = 〈δE〉 = 0, (2.7)

while the deviations from the mean fields are the small-scale fields. The gyrofrequencies and
pitch-angles can be defined in the same way as ensemble averages.

Individual trajectories may become complicated, while properties of the whole population
remain meaningful. Hence, we now switch to a statistical description of particles. The phase
space motion of the distribution of particles is the governed by Boltzmann’s equation:

∂ f
∂t

+
dx
dt
· ∂ f
∂x

+
dp
dt
· ∂ f
∂p

= 0, (2.8)

where f = f (x,p) is the number of particles in a phase space parcel of size dx × dp centered
around (x,p). Inserting the equations of motion gives:

∂ f
∂t

+ 3 · ∂ f
∂x

+ q
(
3

c
×B

)
· ∂ f
∂p

=
∂ f
∂t

∣∣∣∣∣
scatt

, (2.9)

where we separated the contributions of small-scale fields into the term ∂ f
∂t

∣∣∣
scatt

. Both CRs and
thermal gas particles are described by this Vlasov-equation. In the following, we treat both
particle species separately.

Particles in the thermal gas have lower energies (eV to keV scales for thermal particles
compared to MeV to EeV scales for CRs ) but larger number densities (scales of nthermal ∼

1cm−3 compared to nCR ∼ 10−10cm−3). We describe the thermal gas as a fluid and use the
standard approximation of ideal MHD for it.The fluid approximation is valid as long as binary-
collisions between particles are faster than any time of interest. In this case, Boltzmann’s
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H-theorem guaranties that the momentum distribution of the particles is highly unstructured
and is approximatively given by the Maxwell-Boltzmann distribution:

fthermal(v) = C exp[−m/(kBT )(v − u)2], (2.10)

where kB is Boltzmann’s constant, T is the temperature of the gas, and C is a normalization
constant. The quantity u = u(x, t) is the bulk or mean velocity of the thermal gas. There-
fore, the whole distribution of thermal particles can be described by a normalization constant,
the temperature, and the bulk velocity. In the following we describe the thermal distribution
through those three quantities. In the following, we use the letter f for the distribution of CRs.

Boltzmann’s theorem is not valid for CRs because these particles do not scatter rapidly with
themselves; hence, we cannot assume that CRs follow a Maxwell-Boltzmann distribution. Sur-
prisingly measurements of the CR distribution show that the momentum distribution of CRs is
highly unstructured, too. Although, there are minor features contained in the CR distribution,
like the CR ankle and knee, the energy carrying bulk of CRs can be approximated by a power-
law f (p) ∝ p−α. The powerlaw index α can vary between 4.0 and 4.7 when measured directly
at Earth or theoretically inferred for the DSA mechanism.

2.2. Equations of MHD

The three equations of ideal MHD are:

∂ρ

∂t
+∇ · (ρu) = 0, (2.11)

∂ρu

∂t
+∇ · (ρuu + P1 −BB) = f , (2.12)

∂ε

∂t
+∇ · [u(ε + P) − (u ·B)B] = u · f , (2.13)

where ε = ρu2/2 + εth + εB is total energy density, εB = B2/2 is the magnetic energy, εth =

Pth/(γth − 1) is the thermal energy density, Pth is the thermal pressure, P is the total (thermal
+ magnetic) pressure, γth is the adiabatic index, ρ is the density of the gas, and f are external
force densities. We shortly describe the physical meaning of these equations: The

continuity equation in eq. (2.11) states that the total mass is conserved. When all particle
sinks and sources are neglected, this is equivalent to the conservation of the total number of
particles constituting the gas. As the density can be linked with the normalization constant
in eq. (2.10), the continuity equation evolves one of the defining parameters of the Maxwell-
Boltzmann distribution. The

equation of motion in eq. (2.12) is the macroscopic version of Newton’s second law. It
states that the total momentum inside the fluid is conserved up to external forces acting on the
gas. The Lorentz force is included by the contributions due to the magnetic pressure B2/2 to
the total pressure and magnetic tension BB. Note that this equation merely evolves the mean
velocity of the gas and not that of individual particles. The
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energy equation in eq. (2.13) describes how the total energy evolves. It states that energy
is conserved up to work v · f done by external forces. As total energy depends on the thermal
energy which by itself depends on the gas temperature, this yields the third and last parameter
of the Maxwell-Boltzmann distribution. We can thus fully describe the thermal gas by those
three equations.

These equations are incomplete, since no equation states the dynamics of the magnetic field.
We here resort to the approximation of ideal MHD and assume infinite conductivity of the gas.
It follows that the evolution of the magnetic field is fully described by two equations:

∂B

∂t
+∇ · (Bu − uB) = 0, (2.14)

∇ ·B = 0, (2.15)

where the first equation is the ideal MHD version of Faraday’s induction law and the second
equation states the absence of magnetic monopoles.

As our main interest lays in the dynamics of CRs, we assume that the solution of these
equations are given through numerical or other methods. As CRs interact indirectly with the
thermal gas, we show in sec. 3.6.1 how those equations have to be modified to account for the
presence of CRs. To this end, we derive additional forces f that are exerted on the gas.

2.3. Alfvén waves

A particular useful technique to analyze the mathematical structure of nonlinear partial dif-
ferential equations, such as those of ideal MHD, is to linearize them. The first step in this
linearization is to introduce small perturbations in all relevant quantities:

ρ 7→ ρ + δρ B 7→ B + δB (2.16)
u 7→ 0 + δu Pth 7→ Pth + δPth (2.17)

and neglecting any external forces. We assume that the perturbations reside on an uniform
background gas and take all quantities without a δ to be constant. This situation is approxima-
tively realized if we focus on length scales smaller than the scales on which the actual quantities
of MHD change. Thus our the depicted situation is local in Nature. Furthermore, we assume
that the sound velocity is constant and that, consequently,

δPth = c2
sδρ, (2.18)

where cs is the isothermal sound speed.
Inserting those replacements into the MHD equations and ignoring all terms that are at least

quadratic in a perturbation yields:

∂δρ

∂t
= ρ∇ · δu, (2.19)

ρ
∂δu

∂t
= −c2

s∇δρ + (∇× δB)×B, (2.20)

∂δB

∂t
= −∇× (δu×B). (2.21)
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Taking the time derivative of eq. (2.20) and inserting the other two equations yields:

∂2δu

∂t2 = c2
s∇∇ · δu − {∇× [∇× (δu× 3a)]}× 3a (2.22)

where the Alfvén vector is 3a = b3a and the Alfvén velocity is

3a = B/
√
ρ. (2.23)

As these equations are linear in all perturbations, we can express their solutions in terms of the
Fourier transform of all occurring quantities. We use the following definition of the Fourier
transformation:

a(x, t) =

∫
R

dω
∫
R3

dk a(k, ω) ei(ωt−k·x), (2.24)

where a ∈ {δρ, δu, δB}. The new functions a(k, ω) are called Fourier components of a(x, t).
The most convenient way to express the linearized equations in terms of the Fourier compo-

nents is to use the replacements:

∂

∂t
7→ iω ∇ 7→ −ik, (2.25)

which can be derived from eq. (2.24). Inserting this replacements into the linearized MHD
equation links ω and k through a set of coupled linear equations. Those equations can be
solved for ω and yield an expression for ω = ω(k). Only the Fourier components which fulfill
this dispersion relation have a physical meaning. Any other combination of ω and k do not
lead to an approximate solution of the MHD equation and are thus useless for physical models.
We reduce the Fourier decomposition to:

a(k, ω) = δ(ω − ω(k)) a(k), (2.26)

and hence have:

a(x, t) =

∫
R

dk a(k) ei(ω(k)t−k·x), (2.27)

Finally, inserting eqs. (2.25) into eq. (2.22) and using Grassmann’s identities gives:

ω2δu = c2
skk · δu− 3a · [δu (k · 3a) − 3a (k · δu)]k+ (3a ·k) [δu (k · 3a) − 3a (k · δu)] (2.28)

This equation in ω, k and δu contains all the information of the dispersion relation. We can
eliminate δu by requiring that the waves are incompressible (k · δu = 0, and therefore do
not introduce a density perturbation) and that the velocity perturbation is perpendicular to the
mean magnetic field (B · δu = 0). Inserting this into eq. (2.28) yields the dispersion relation
of Alfvén waves:

ω2 = (3a · k)2. (2.29)

The Fourier decomposition in eq. (2.27) integrates over multiple Fourier components and con-
sequently over multiple Alfvén waves. Under most circumstances, these waves tend to have
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larger amplitudes at smaller wave numbers and follow approximatively a powerlaw: |a(k)| ∝
k−q. In our theory this behavior has two different physical reasons: for Alfvén waves in the
large-scale magnetic field this distribution is a result of nonlinear wave-mode couplings and
the resulting turbulent cascade of energy. For small-scale waves this is also true but is further
supported by another idea. Because CRs are charged particles they can generate electromag-
netic fields and in particular Alfvén waves on their on gyro scale (Lerche, 1967). The latter
effect is caused by a plasma-kinetic instability: the gyroresonant instability. As the momentum
distribution of CRs is a powerlaw, the waves produced by them is likely to be one too.

Even though the large-scale magnetic field has an inherent turbulent structure, we shall as-
sume that we understand its evolution and hence know B(x, t). We cannot assume this for the
small scales. We need to describe them in a statistical way because we do the same for particles
that generate the waves. We introduce the statistics of Alfvén waves as follows: the linearized
equations of MHD do not contain any restrictions on the correlations between two modes at
k and k′. Therefore, it is common practice to assume that they are uncorrelated (Tautz and
Shalchi, 2010):

〈a(k)a∗(k′)〉 = |a(k)|2δ(k − k′), (2.30)

where 〈〉 is the average over realizations. This can be understood in practical terms: as two
Alfvén waves do not influence each other by virtue of the linearized MHD equations, we have
to adopt the most general assumptions concerning their correlation. Any correlation between
the waves would have a physical reasoning supporting this correlation. Indeed, localized and
interaction nonlinear Alfvén waves have to be correlated due to their shared history. Even
temporal correlations between two waves can occur and alter the interaction between CRs and
Alfvén waves (Teufel and Schlickeiser, 2002; Shalchi, 2009).

The cascade of uncorrelated wave modes is the mathematical description of a stochastic
population of Alfvén waves which we will refer to as the Alfvénic turbulence. As a consequence
of the stochasticity, we continue to describe the waves in terms of their Fourier components a(k)
rather then in their real-space realizations a(x, t).

We can further restrict our pool of waves due to a plasma-kinetic effect named linear Landau
damping. This effect does not occur in our dispersion relation, as we modeled the gas hydro-
dynamically. Consider an oblique Alfvén wave (relative to mean magnetic field). These waves
can couple to magnetosonic waves, which couple to thermal particles. Through this coupling
the thermal plasma can now interact and exchange energy with the Alfvén wave. The particles
mostly extract energy and effectively damp these wave (Foote and Kulsrud, 1979). We discard
all oblique waves and reduces the dispersion relation of Alfvén waves to:

ω = ±3ak, (2.31)

where k = k · b. These waves are non-dispersive as their resulting phase and group velocities
coincide. From the two signs in eq. (2.31) we know that there are two distinct propagation
modes: parallel Alfvén waves either co- or counter-propagate along the mean magnetic field.
To simplify our discussion, we drop the term ”parallel” and simply call these waves ”Alfvén
waves” if no confusion is possible.

By counting the dependent equations and MHD quantities, we can conclude that there are 2
linearly independent quantities. This degeneracy is present only for parallel propagting Alfvén
waves. In this case, one branch of the magnetosonic waves algebraically coincides with the
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2.3. ALFVÉN WAVES

geniue, the shear, Alfvén waves and is called a pseudo Alfvén wave. Both parallel propagting
waves have the same dispersion relation and are incompressible but have different directions of
the magnetic field perturbations δB. Because δB ⊥ B holds for both waves, we name them
by their polarization direction. If B ‖ z we call

δBR(k) = δBx(k) − iδBy(k), (2.32)

δBL(k) = δBx(k) + iδBy(k) (2.33)

the right- and left-hand polarized components. The magnetic energy contained in the, e.g.,
right-handed Alfvén waves is, using eq. (2.30):

εR
a (x, t) =

〈
δBRδBR∗

2

〉
(x, t) (2.34)

=
1
2

∫ ∞

−∞

dk
∫ ∞

−∞

dk′
〈
δBR(k)δBR∗(k′)

〉
ei[(ω(k)−ω(k′))t−(k−k′)z] (2.35)

=
1
2

∫ ∞

−∞

dk |BR(k)|2, (2.36)

where we had to take the ensemble average since energy is an actual physical observable and
hence shared between all realizations. Furthermore, as the magnetic field itself is a physical
quantity it must be real valued such that the reality condition δB(k) = δB∗(−k) holds. Defin-
ing the spectra of waves as IR,L(k) = |BR,L(k)|2 and inserting both definitions yields our final
expression for the magnetic wave energy. There are two wave polarizations and two wave
propagations; such that we can define four different wave energies:

εR,L
a,± (x, t) =

∫ ∞

0
dk IR,L

± (k), (2.37)

where IR,L
± (k) are the respective intensities.
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3 Theory of Cosmic Ray Hydrodynamics
In this section we are going to derive and discuss our new hydrodynamical equations. In a first
step we calculate moments of the Vlasov equation until most of its dynamics is captured by two
more simplified equations. We proceed with a discussion of the stochastic scattering between
CRs and the Alfvénic turbulence. Adopting a grey-like assumption on the wave spectra, we are
able to incorporate the effects of microscopic scattering into our macroscopic equations. We
discuss how our new theory relates to currently established theories throughout our derivation.

3.1. Derivation of the CR Fluid equations

Integration of the full Vlasov-equation (2.9) is unfeasible in a tractable analytical manner. To
overcome the complexity of 7 coupled dimensions, several approximations can be made. As
described above, we assume that the electromagnetic perturbations are small (i.e. δB � B).
Therefore, the typical time scales on which the perturbations become dynamically important
are larger than the particle’s gyrofrequency. In this time hierarchy, the hydrodynamic time
scale is even large. This is the time scale on which the whole CR population can influence
hydrodynamic properties of the thermal gas. As our main-interest lies in those hydrodynamical
scales, we can approximate processes on time scales well below. We do so by stepping the
hierarchy backwards and conclude that the time scale of a single CR revolution cannot not
affect the hydrodynamical picture of the CR population. We can thus average the Vlasov-
equation over a CR gyro-orbit.

The remaining phase space dynamics of CRs are described by a gyro-averaged form of
the Vlasov-Equation, the so called focused transport equation (Skilling, 1975; Isenberg, 1997;
Zank et al., 2000):

∂ f
∂t

+ (u + µ3b) ·∇ f

+

[
1 − 3µ2

2
(b ·∇u · b) −

1 − µ2

2
∇ · u

]
p
∂ f
∂p

(3.1)

+
[
3∇ · b + µ∇ · u − 3µ(b ·∇u · b)

] 1 − µ2

2
∂ f
∂µ

=
∂ f
∂t

∣∣∣∣∣
scatt

.

In this equation a mixed coordinate system is used: while x and t are measured in the lab
frame, the particle momentum p and velocity 3 are measured in the comoving frame with the
gas, which propagates with a local non-relativistic velocity u. The cosine of the particle pitch-
angle µ = 3 · b/3 is measured with respect to the unit vector along the local magnetic field b.
For an extensive discussion of the occurring pseudo-forces see le Roux and Webb (2012).

There are multiple ways to tackle the remaining complexity of this equation: the Chapman-
Enskog expansion, where the fast (scattering) and slow (hydrodynamic) time scales are treated
separately, or the moment-expansion, where the transport equation is expanded in moments of
one of its coordinates.

The first method is the standard way to derive various forms of the diffusion equation and is
the common choice to describe CR transport (Skilling, 1971; Zweibel, 2013). The pitch-angle
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CHAPTER 3. THEORY OF COSMIC RAY HYDRODYNAMICS

scattering time scale is assumed to be the fast time scale, whereas the actual time scale of the
hydrodynamical system is treated as slow. Usually this expansion results in a diffusion equa-
tion. In general, the order of the Chapman-Enskog expansion, determines whether one faces
normal diffusion (e.g. heat-equation-type diffusion ∂tq = ∂xxq) or more sophisticated mathe-
matical forms of physical diffusion (e.g. hyper-diffusion ∂tq = ∂xxxxq, Malkov and Sagdeev
(2015)). The assumed separation between the time scales has to be checked a posteriori, as it
not a priori clear that the resulting apparent diffusion velocity remains physical.

The Chapman-Enskog expansion is used in RHD as an approximation in the optically thick
limit (Mihalas and Weibel Mihalas, 1984): there, photons scatter rapidly such that any pre-
ferred direction of the photon distribution is lost on the slow time scale. On a microscopic
level individual photons move at the speed of light, but their bulk velocity is frozen to the gas
velocity. Relative to this velocity, the photons diffuse in all directions. But there are some
problems concerning the validity of the diffusion approximation in RHD: if it is used in the
optically thin limit light can diffuse at velocities exceeding the speed of light. In addition, and
more practically, there are no shadows in the diffusion approximation, as light is expected to be
scattered efficiently on a global level and thus around any obstacle.

Both RHD problems are partially cured if one uses the second, the moment method. The
characteristic feature of this method is the expansion in one or more dynamically important
coordinates to describe the dynamics. This is accomplished in practice by choosing suitable
functions hi(x,p) such that there exist expansion coefficients fi with:

f (t,x,p) =

∞∑
i=0

fi(t) hi(x,p). (3.2)

The burden of solving eq. (3.1) or similar equations is transfered towards finding solutions of
differential equations that evolve fi. In general, the expansion functions are chosen such that the
resulting equations for the fi’s are easier to solve. The evolution equations for the coefficients
can be obtained by inserting eq. (3.2) into the original differential equation and subsequently
integrating it. This procedure results in a set of differential equations:

∂ fi

∂t
= ... i = 0, 1, 2, ... (3.3)

In RHD, the expansion coordinate is the propagation direction of photons n. This results
into moments of the angular distribution of radiation (Mihalas and Weibel Mihalas, 1984).
For example, to first order this approach leads to the two-stream approximation, where light is
expected to move either parallel or anti-parallel to a preferred direction. This refined description
of photon propagation restores shadows behind obstacles.

The downside of this method is that one usually faces a closure problem. An infinite number
of moments and their evolution equations are needed to close the system (3.3). There are,
again, different ways to tackle this problem: the most practical is to truncate the expansion
after a certain order and neglect contributions from higher moments. This results in the case of
radiative transfer in the so called Eddington-approximation, where only the 1 and n moments
are considered. We will use an similar expansion as the basis for our description of cosmic ray
transport.

While this solution to the closure problem is simple, it is also wrong: Zank et al. (2000)
shows that the order of truncation determines the global features of the solution. In the end,
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3.1. DERIVATION OF THE CR FLUID EQUATIONS

one has to check whether the neglected moments are indeed small and if the truncation was
justified.

3.1.1. Pitch-Angle Moments

We use the moment-method to derive macroscopic equations from (3.1). This route is as old
as the first descriptions of cosmic ray transport and was frequently revisited (Klimas and San-
dri, 1971; Earl, 1973; Zank et al., 2000; Litvinenko and Schlickeiser, 2013). We here recall
the excellent derivation of Zank (2014) for completeness and to introduce our notation. CRs
are mostly scattered in pitch-angle rather than momentum, since the former process does not
require an energy exchange between the scattering agent and the CR. Therefore, we expect
pitch-angle scattering to be more dynamically important. We expand the focused transport
equation in moments of the pitch-angle µ by using (scaled) Legendre polynomials Pn as our
expansion functions:

f = f0 P0(µ) + f1 P1(µ) + f2 P2(µ) + ...

= f0 + f1 3µ + f2 5
1 − 3µ2

2
+ ... (3.4)

This expansion has the usual interpretation that is known, e.g., from electrostatics: f0 represents
the monopole of the distribution and contains the information about the integrated quantities
of the distribution. The first moment f1 is the dipole and is the skewness of f in our preferred
direction along the mean magnetic field b. Finally, f2 is the quadrupole moment while f3, f4, ...
are higher-order poles.

The Legendre polynomials are best suited for the analysis of (3.1), due to their relation to the
scattering operator: one of the most basic scattering operators describes pitch-angle scattering
by:

∂ f
∂t

∣∣∣∣∣
scatt

=
∂

∂µ

[
1 − µ2

2
ν(µ, p)

∂ f
∂µ

]
, (3.5)

where ν(µ, p) is the scattering coefficient. The Legendre polynomials are eigenfunctions of this
scattering operator if and only if the scattering coefficient is independent of µ and p. In this
case

∂

∂µ

[
1 − µ2

2
ν(p)

∂Pn

∂µ

]
= −

n(n + 1)
2

ν(p)Pn. (3.6)

To further proceed, we truncated the expansion (3.4) after the first order and continue with:

f = f0 + f13µ. (3.7)

Because of this fundamental assumption we circumvent the closure problem. It is valid in the
case of rapid pitch-angle scattering causing only small anisotropies of the CR distribution. A
more thoughtful a posteriori justification is given later.

Inserting this ansatz into eq. (3.1) and taking the zeroth and first µ-moments of this equation
results in equations for both the isotropic and anisotropic distribution. For completeness, we
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explicitly calculate all term-by-term integrals in the Appendix A.1. The differential equation
for the isotropic part reads:

∂ f0

∂t
+ u ·∇ f0 +∇ · (3b f1) −

1
3

(∇ · u)p
∂ f0

∂p
=
∂ f0

∂t

∣∣∣∣∣
scatt

. (3.8)

The new equation for the anisotropy in the CR-distribution reads:

∂ f1

∂t
+
3

3
b ·∇ f0 + u ·∇ f1 +

[
−

2
5

(b ·∇u · b) −
1
5
∇ · u

]
p
∂ f1

∂p

+

[
1
5
∇ · u − 3

5
(b · ∇u · b)

]
f1 =

∂ f1

∂t

∣∣∣∣∣
scatt

. (3.9)

A more careful expansion would use eigenfunctions of the scattering operator with a pitch-
angle dependent scattering rate ν(µ). These eigenfunctions exist and form an orthogonal set
of functions in virtue of the Sturm-Lioville theory for most cases. In general, this would give
us different expansion functions (but most likely polynomials), which would differ from the
Legendre polynomials. The only advantage of this approach would be, that we did not need
to assume pitch-angle independence of the scattering coefficient and would capture the dy-
namics more accurately. Since we cutoff the expansion after the first order and assume small
anisotropies, we do not expect an overall change of the presented theory. Further, this more
rigorous treatment would obfuscate the derivation and cast our results inherently dependent on
the actual functional form of ν. Our compromise to expand f as if the scattering coefficient is
independent of pitch-angle mediates between physical clarity and mathematical correctness.

3.1.2. Fluid equations

To gain insight into the macroscopic evolution of the CR population, we take appropriate
moments of the phase space eqs. (3.8) and (3.9). We here focus on the thermodynamic de-
scription of CRs and thus integrate the distribution multiplied by the relativistic kinetic energy
T (p) =

√
p2c2 + (mc2)2 − mc2 to get the total CR energy density

εcr =

∫
d3 p T (p) f (p, µ) =

∫ ∞

0
dp 4πp2T (p) f0(p). (3.10)

Closely related, the CR-pressure can be defined as

Pcr =

∫
d3 p

p3
3

f (p, µ) =

∫ ∞

0
dp

4π
3

p2 p3 f0(p). (3.11)

All higher moments of the Legendre-polynomial expansion vanish and only the isotropic part
of distribution contributes to both quantities. Both pressure and energy obey an equation of
state:

Pcr = (γcr − 1)εcr (3.12)
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with γcr = 4/3 in the ultra-relativistic limit. By analogy, similar expressions for the anisotropic
distribution can be defined:

fcr =

∫ ∞

0
dp 4πp2T (p)3 f1(p), (3.13)

Kcr =

∫ ∞

0
dp 4πp2 pv

3
3 f1(p) (3.14)

The macrophysical meaning of both equations is evident: because fcr is the µ3-moment of the
CR energy density, it is the CR energy flux along the magnetic field. Respectively, Kcr is the CR
pressure flux along the magnetic field lines. Again, an equation of state links both quantities,
which coincides in the ultra-relativistic limit with that of CR energy density and flux:

Kcr = (γcr − 1) fcr. (3.15)

To finally get a macroscopic evolution equation for the CRs, we multiply eqs. (3.8) and (3.9)
by T (p)3 and integrate over the momentum space. To close the resulting equations, we take the
ultra-relativistic limit (3 = c) of terms, which cannot be expressed in εcr, Pcr, fcr or Kcr. This
only needs to be done in terms containing the derivative along the magnetic field. We arrive at

∂εcr

∂t
+∇ · (u(εcr + Pcr) + b fcr) = u ·∇Pcr +

∂εcr

∂t

∣∣∣∣∣
scatt

(3.16)

and
∂ fcr

∂t
+∇ · (u fcr) +

c2

3
b · ∇εcr = − (b ·∇u) · (b fcr) +

∂ fcr

∂t

∣∣∣∣∣
scatt

. (3.17)

We used the equations of state (3.15) to write eq. (3.17) in this compact form.
Except for the term containing fcr, the interpretation of eq. (3.16) is as usual: the CR energy

is a conserved quantity, which is convected with the gas. Thus CRs are subject to adiabatic
gains or loses whether the gas is expanding or contracting. The interpretation of eq. (3.17) is
not as straightforward: in an uniform magnetic field fcr convected with the gas but, in general,
the first term of the right hand side prevents this interpretation. It accounts for changes of the
flux due to a spatial varying MHD environment. This term is a combined consequence of our
local pitch-angle definition and our comoving formulation, as pitch-angles constantly change
in disordered magnetic fields.

The third term describes more directly the transport mechanism of CRs. This term is known
from radiative transfer, as it is the projected counterpart of a term appearing in the Eddington-
approximation. Consider the toy model of a CR population with globally vanishing flux but
locally varying density where all CRs have the same energy and all gas quantities are uniform.
In this case, because the flux is zero, the CR anisotropy is zero everywhere, too. Thus, at every
point the same number of CRs are moving with and against the direction of the magnetic field.
This situation has to change after an instant of time, as we can see by focusing on an isolated
parcel: due to the local gradient in the number of CRs, the number of CRs that move from one
direction into the parcel cannot be the same number of CRs that enter from the other direction.
In consequence, there are now more CRs moving in the opposite direction of the CR gradient.
This corresponds to an increase in anisotropy and in flux as well.
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3.2. Cosmic Ray Scattering

So far, we have only accounted for the dynamics imposed by the large-scale magnetic field.
As the small-scale magnetic fields are turbulent, we have to describe their interaction with
stochastic methods. A simple and effective method to handle the stochasticity is to introduce
diffusions terms into the Vlasov-equation.

CRs are affected by the Lorentz-force of small-scale electromagnetic fields in two ways: 1)
by pitch-angle scattering, where the magnetic component can change the pitch-angle of a CR
but cannot increase the particle momentum or its energy, and 2) by momentum diffusion, where
the Fermi-II process stochastically accelerates charged particles through the electric component
of the turbulence. Introducing a corresponding diffusion term for each possible combination of
µ and p in eq. (3.1) gives:

∂ f
∂t

∣∣∣∣∣
scatt

=
1
p2

∂

∂p
p2

(
Dpp

∂ f
∂p

+ Dpµ
∂ f
∂µ

)
+
∂

∂µ

(
Dµµ

∂ f
∂µ

+ Dpµ
∂ f
∂p

)
, (3.18)

where Dµµ, Dpp and Dµp = Dpµ are diffusion coefficients.
Correctly evaluating the diffusion coefficients is challenging. Each CR samples the elec-

tromagnetic fields on its own trajectory. The resulting forces differ from particle to particle.
Furthermore, due the scattering, these trajectories are complicated and non-analytic and CRs
can interact or resonate with many different Alfvén waves. This limits any analytic approach
to describe CR scattering. Therefore, we have to proceed with an approximation. In the quasi-
linear theory (QLT) the electromagnetic turbulence is sampled along the unperturbed orbits of
eq. (2.3). This is approximately true as we assume that the perturbation of the Alfvén waves
are small and the actual particle trajectory diverge only slightly from the unperturbed orbit.

A way to check these assumption is to simulate true orbits of CRs in predefined Alfvénic
turbulence and calculate the diffusion coefficients of the CR distribution afterwards. This is
done for pitch-angle scattering in Tautz et al. (2013), where the QLT is shown to be in a good
agreement with the numerical results.

In QLT the resonance between Alfvén waves and CRs becomes a sharp δ-resonance: specific
waves of frequency ω resonate with the CRs of velocity 3, pitch-angle µ and gyrofrequency Ω

that fulfill the resonance condition:

ω − kµ3 + nΩ = 0 n = ...,−1, 0,+1, ... (3.19)

Note that this is a gyroresonance which is Doppler-shifted into the frame of the CR. The sign of
n determines whether CRs interact with waves of right-handed (n > 0) or left-handed (n < 0)
polarization. The main resonances of interest for pitch-angle scattering are n = ±1 while higher
harmonics can be neglected for purely parallel propagating waves (Schlickeiser, 1989):

ω − kµ3 ±Ω = 0 (3.20)

We can interpret the condition from a wave and from a particle perspective: if we fix a wave
with particular ω, then eq. (3.20) reveals which CRs are able to resonate and hence interact with
it. As eq. (3.20) depends nonlinearly on the particle properties, this condition is fulfilled for
CRs of different energies and pitch-angles. If we instead consider a fixed particle momentum,
the condition can be manipulated such that it singles out the resonant wave frequencies.
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We derive in sec. 2.3 the dispersion relation (2.31) for Alfvén waves:

ω =

+k3a for co-propagating waves, and
−k3a for counter-propagating waves.

(3.21)

By inserting this into eq. (3.20), we see that there are 4 combinations of signs that are able to
fulfill the resonance condition: CRs resonate with co-propagating waves

+
3a

3
< µ of right-handed polarization,

µ < +
3a

3
of left-handed polarization,

and with counter-propagating waves
−
3a

3
< µ of right-handed polarization,

µ < −
3a

3
of left-handed polarization.

Therefore, there are always two waves of different polarizations and propagation directions that
interact with a given CR.

By rearranging eq. (3.20) for k we see that the resonant wave number is the same for reso-
nances of different polarizations but equal wave propagation directions:

kres,± =
Ω

µ3 ∓ 3a
. (3.22)

In the limit µ → ±3a/3, the denominator of eq. (3.22) vanishes and kres,± = ∞. Because
there are no waves with this wavenumber, CRs with µ = ±3a/3 seem to be unable to scatter.
This introduces a sink in pitch-angle space as every CRs would get pitch-angle scattered until
it approaches this µ-value. After a few scattering times, the whole CR population thus gyrates
almost perpendicular to the mean magnetic field. This apparent process is the manifestation
of the 90◦-problem. It is a result of the initial QLT-assumption of unperturbed gyro-orbits. In
reality, even the smallest amount of scattering alters CR orbits compared to the unperturbed one.
This broadens the resonance between CRs and Alfvén waves. In consequence, this introduces
additional scattering from waves neighboring the sharp resonance wave number kres,±. Hence,
even CRs with µ = ±3a/3 get scattered by Alfvén waves (Shalchi, 2005). Successor theories of
QLT which do not suffer from this problem are developed in Shalchi and Schlickeiser (2005);
Tautz et al. (2008) with a standard reference book by Shalchi (2009). Nevertheless, we are
mostly interested in hydrodynamic CR transport and, as we will show later, therein only pitch-
angle averaged scattering coefficients are important. These quantities are very well described
in the QLT limit (see, e.g., figures of Tautz et al., 2013).

We subsume the different handedness of the resonant polarization-types into a definition and
introduce the resonant wave energy

R±(kres,±) = IL
±(−kres,±) + IR

± (kres,±), (3.23)

and set IL,R
± (k) = 0 for negative arguments k < 0. Through this definition, R± returns the

intensity of the correct polarization state for a given propagation direction (see Fig. 3.1).
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IL
+ IR

+

µ
+1−1 3a

3
0

k = 0

k = ∞

Figure 3.1.: On the definition of resonant wave energy for co-propagating Alfvén waves. Any
given CR resonates with only one resonant wave polarization state of left- (L) or
right-(R) handedness (see text). At µ = 3a/3 the resonant wave number kres,+ be-
comes singular as the denominator in eq. (3.22) vanishes. Moving µ over this point,
kres,+ switches its sign which physically corresponds to a change of the polarization
state of the resonant wave type. Hence, the point k = ∞ connects both wave types
by their resonance with CRs of µ = 3a/3. Mathematically this procedure is called
Alexandroff compactification and enables us to topologically identify the k-space
as a circle. Figure from Thomas and Pfrommer (2018).

By analogy, we define a total wave power spectrum that contains all power carried by co-
and counter-propagating waves via:

E±(k) = IL
±(k) + IR

± (k). (3.24)

This enables us to define the total Alfvén wave energy density:

εa,± =

∫ ∞

0
dk E±(k). (3.25)

With these definitions in place, the scattering frequency at which Alfvén waves scatter CRs
is given by (Skilling, 1975; Schlickeiser, 1989):

ν±(p, µ) = πΩ
|kres,±|R(kres,±)

εB
(3.26)

Deriving the corresponding diffusion coefficients is challenging. Every possible combination
of δE and δB correlations needs to be linked using dispersion properties of Alfvén waves and
contribute to these coefficients. Even just sketching the derivation would highly obscure the
present analysis; hence, we simply cite the results (Schlickeiser, 1989; Dung and Schlickeiser,
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1990):

Dµµ =
1 − µ2

2

[(
1 − µ

3a

3

)2
ν+ +

(
1 + µ

3a

3

)2
ν−

]
, (3.27)

Dµp =
1 − µ2

2
p
3a

3

[(
1 − µ

3a

3

)
ν+ −

(
1 + µ

3a

3

)
ν−

]
, (3.28)

Dpp =
1 − µ2

2
p2 3

2
a

32
(ν+ + ν−). (3.29)

Contrary to the currently preferred convention to express the diffusion coefficients directly in
terms of the resonant wave energy (used, e.g., by Dung and Schlickeiser, 1990), we express
these coefficients in terms of ν±. The algebraic advantage of our convention will become ap-
parent later.

The rest of this work is devoted to the approximative analysis of eq. (3.18) together with
these coefficients.

3.3. Cosmic Ray Diffusion

In this section we treat the scattering in its non-relativistic limit. With this we show how to
derive a hydrodynamic form of the scattering terms that result in a set of transport equations
resembling the dynamics of the usual CR diffusion equation. In the next section this derivation
is expanded to a more precise model. This results in equations which capture the diffusion as a
limiting case.

In the limit 3a/3→ 0 all terms except the pitch-angle diffusion term drop out of eqs. (3.27) to
(3.29). This limit has thus a simple interpretation: as all momentum altering terms vanish, CRs
solely interact with the magnetic component of the Alfvén waves. The remaining scattering
term in eq. (3.18) is given in eq. (3.5) with ν(µ, p) = ν+(µ, p)+ν−(µ, p) being the total scattering
coefficient. To calculate how this scattering influences the evolution of CR energy we have to
take the first moment of this equation, which results in

∂εcr

∂t

∣∣∣∣∣
scatt

=

∫ ∞

0
dp2πp2T (p)

∫ 1

−1
dµ

∂

∂µ

[
1 − µ2

2
ν(µ, p)

∂ f
∂µ

]
=

∫ ∞

0
dp2πp2T (p)

1 − µ2

2
ν(µ, p)

∂ f
∂µ

∣∣∣∣∣∣µ=1

µ=−1

= 0 (3.30)

As expected, there are no gains or loses of CR energy due to interactions with the magnetic
turbulence. The corresponding equation for the effect of scattering on the CR flux density is
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calculated by taking the second moment of (3.5). We get:

∂ fcr

∂t

∣∣∣∣∣
scatt

=

∫ ∞

0
dp2πp2T (p)3

∫ 1

−1
dµ µ

∂

∂µ

[
1 − µ2

2
ν(µ, p)

∂ f
∂µ

]
= −

∫ ∞

0
dp 2πp2T (p)3

∫ 1

−1
dµ

1 − µ2

2
ν(µ, p)

∂ f
∂µ

= −
3
2

∫ ∞

0
dp 4πp2T (p)3

∫ 1

−1
dµ

1 − µ2

2
ν(µ, p) f1

= −

∫ ∞

0
dp 4πp2T (p)3ν(p) f1

= −ν̄T fcr, (3.31)

where we introduce the energy-averaged scattering coefficient as

ν̄T =
1
fcr

∫ ∞

0
dp 4πp2T (p)ν(p) f1(p), (3.32)

where ν(p) is the pitch-angle-averaged scattering coefficient (with 3/2 for normalization rea-
sons):

ν(p) =
3
2

∫ 1

−1
dµ

1 − µ2

2
ν(p, µ). (3.33)

3.3.1. Relation to the Diffusion and Telegraph Equations

We are now able to show, that our formulation is a superset of the usual diffusive-transport
approximations. The approaches taken in standard works of Skilling (1971) and Schlick-
eiser (1989) are the same: both authors use the Chapman-Enskog expansion of the Fokker-
Planck equation to separate different contributions by their corresponding order in O(3a/3) and
O(ν̄T 3a/3).

Expanding eq. (3.9) to lowest order in the two numbers 3/L, where L is a typical CR gradient
length, and ν̄T results in

3

3
b ·∇ f0 = −ν̄T f1. (3.34)

This links the macroscopic gradient to the local anisotropy of cosmic rays. It is further an
approximation of the steady state of eq. (3.9). By inserting this equation back into eq. (3.8)
results in the usual diffusion equation for the distribution f . To derive a similar equation we
would have to take the appropriate moments of the diffusion equation in f . We skip this step
and use this expansion directly for the energy density and flux equations. In the latter one, the
lowest order Chapman-Enskog expansion reads

c
3
b ·∇εcr = −ν̄T fcr. (3.35)

Inserting this back into the equation for the total energy (3.16) results in:

∂εcr

∂t
+∇ · (u(εcr + Pcr) − κ̄bb ·∇εcr) = u ·∇Pcr, (3.36)
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which perfectly coincides with the known diffusion equation (see e.g. Zweibel, 2017) when we
identify

κ̄ =
c2

3ν̄T
(3.37)

as the diffusion coefficient. Thus our new formulation in terms of CR energy density and flux
is a superset of the widely used diffusion approximation.

We can further connect our set of equation to the telegraph equation. For u = 0, we obtain,
after differentiating eq. (3.16) with respect to t and eq. (3.17) with respect to z,

1
ν̄T

∂2εcr

∂2t
+
∂εcr

∂t
=∇ · (κ̄bb ·∇εcr) (3.38)

The telegraph equation is hyperbolic with characteristic speeds = ±c/
√

3, and is a compromise
between the wave and diffusion equations. The fundamental solution of eq. (3.38) contains
two wavefronts δ(x ± c/

√
3) with a normalization, decaying with a characteristic time of 2/ν

(Malkov and Sagdeev, 2015). These singular features were the starting point of a recent debate
concerning the validity of the telegrapher approximation for CR transport: direct numerical
simulations of (3.1) do not show any wavefronts (Litvinenko and Noble, 2013, 2016). Hence
the hyperbolic approach to model the CRs cannot be applied in the ’ballistic’ regime t . 2/ν̄T.
In the ’diffusive’ regime (almost no anisotropy and t & 2/ν̄T) both the diffusive and telegrapher
treatments correctly reproduce the expected behavior of the Fokker-Planck-equation (FPE). In
cases, where intrinsic anisotropy is present, the telegraph equation captures features in the solu-
tion of the FPE correctly, which are inherently smeared out in the diffusive solution (Litvinenko
and Noble, 2016; Tautz and Lerche, 2016).

3.3.2. Justification of the Assumption

From eq. (3.34) we see that to order of magnitude

f1 '
1
3

c
ν̄T L

f0 (3.39)

where L is, again, a typical CR-scaleheight. If we take the mean free path of CRs λ as the
maximal average length they travel until they get pitch-angle scattered, we can identify this
quantity as the Knudsen number Kn = λ/L and hence have

f1

f0
' Kn. (3.40)

The Knudsen number tells us, whether a fluid approximation (' tracing out the particle mo-
mentum by taking appropriate moments) is valid or whether we have to consider the dynamics
in a kinetic approach. Inserting eq. (3.37) into the definition yields

Kn '
κ̄

cL
= ·10−4 κ28

Lkpc
, (3.41)
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where we scaled this to the typical galactic diffusion coefficient κ28 = κ̄/(1028 cm2 s−1) used in
the literature (Blasi and Amato, 2012) and scaled the scaleheight to Lkpc = L/(1kpc). Hence at
scales of kpc CRs undergo frequent scattering, such that the fluid description and our expansion
are valid on this scale. On the contrary, if we are interested in scales . 10 pc the CR fluid
approximation breaks down and CRs need to be treated in the full phase space.

3.4. Cosmic Ray Streaming

The presented model in the last section is too simplified. By only accounting for O(1) in ν3a/3
terms, there is no energy transfer between CRs and Alfvén waves. Thus, every initially present
wave energy is quickly damped and CRs remain unscattered. This would cast our derivation
of hydrodynamic equation useless, because CRs cannot be described as as a fluid without an
scattering.

As we show in this section, order O(1) is too low and we have to consider terms of order
O(ν32a/3

2) to correctly capture the interaction between CRs and Alfvén waves1. This higher
order introduces momentum diffusion and hence energy transfer between waves and CRs. In
the relevant cases the energy transfer is a formal sink of particle energy, which needs to be
a source of wave energy. The produced waves scatter CRs and our hydrodynamical theory
remains valid. We thus keep all terms in eqs. (3.27) to (3.29).

Directly calculating moments of CR scattering as the resonant wave spectrum and hence
ν are inherently energy dependent. The presented procedure in the last section proves to be
challenging and different averaged forms of the scattering coefficients have to be introduced
to close the transport equation. A feasible solution to this formal problem is the grey approxi-
mation known from RHD. Therein all absorption/scattering coefficients all treated as constant
values over a certain energy range of interest. This enables calculation of energy moments but
is only valid if there are no special features in the absorption/scattering coefficients.

To directly translate this idea to CRs, we would have to assume that the scattering frequency
ν is constant. From the definition in eq. (3.26) is this algebraically impossible. Even casting
eq. (3.26) to become independent of kres would require a wave spectrum I ∝ k−1, which results
in a diverging total energy density εa,±. Additionally, the gyrofrequency Ω in front of the
definition is energy dependent and cannot be removed by any special choice of I. We adopt a
more complex but also more physically correct variant of grey approximation. For this we focus
our analysis on a typical CR with characteristic velocity 3′ = c = const. and gyrofrequency Ω′.
To embrace the idea of a grey transport, we treat the scattering as if all CR would have this
velocity and gyrofrequency. Formally, we replace all occurring gyrofrequencies and velocities
in the scattering terms by those of the typical CR:

3→ c, (3.42)
Ω = Ω(p)→ Ω′ = const. (3.43)

1One may wonder why such an high order theory is necessary to get a satisfying results. Mihalas and Klein
(1982) answers this question in RHD by noting that ’exact consistency of various forms of the energy equation
for a radiating fluid requires retention of all 3/c terms affecting the radiation field’.
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We further use an isospectral ansatz for the wave intensities:

IL
±(k) = H(k − k′min,±) C±

1
kq , (3.44)

IR
± (k) = H(k − k′min,∓) C±

1
kq , (3.45)

where k′min,± = Ω/(3 ∓ 3a) are the minimal resonant wave numbers and C± are normalization
constants to be determined. This ansatz is physically plausible: the choice q = 5/2 would
correspond to a Goldreich-Sridhar-type energy spectrum predicted for Alfvén waves in the
inertial regime of MHD turbulence (Goldreich and Sridhar, 1995). This would correspond to
a justifiable approach but is not applicable as we are interested in waves that are driven at the
injection scale. Indeed, theoretical arguments including different aspects of CR-Alfvén wave
dynamics come to the conclusion that q = 0.8 to 2.0 for the bulk of resonant wave numbers
(Lazarian and Beresnyak, 2006; Yan and Lazarian, 2011; Lithwick and Goldreich, 2001).

Continuing and inserting our ansatz into the definition in eq. (3.25) results in:

C± = (q − 1)
εa,±Ω

′q−1

(3′ + 3a)q−1 + (3′ − 3a)q−1 . (3.46)

Adopting our replacements and the isospectral intensity into eq. (3.26) yields finally:

ν± = πΩ′
εa,±

εB
(q − 1)

|µ3′ ∓ 3a|
q−1

(3′ + 3a)q−1 + (3′ − 3a)q−1 . (3.47)

We restrict ourself to the case q = 2, which is algebraically convenient and a compromise
between a Goldreich-Sridhar-type energy spectrum and the inferred values of q. With this we
can calculate the pitch-angle-averaged scattering coefficient to

ν̄± =
3
2

∫ 1

−1
dµ

1 − µ2

2
ν± =

3π
8

Ω′
εa,±/2
εB

(
1 +

232a
3′2

)
. (3.48)

To calculate the influence of scattering on CR dynamics we have to evaluate the integrals

∂εcr

∂t

∣∣∣∣∣
scatt

=

∫ ∞

0
dp 2πp2T (p)

∫ 1

−1
dµ

∂ f
∂t

∣∣∣∣∣
scatt

(3.49)

for the CR energy density and

∂ fcr

∂t

∣∣∣∣∣
scatt

=

∫ ∞

0
dp 2πp2T (p)3

∫ 1

−1
dµ µ

∂ f
∂t

∣∣∣∣∣
scatt

(3.50)

for the CR energy flux density. The complete calculation is carried out in the Appendix A.2.
We here state the results. For the CR energy density integral we obtain:

∂εcr

∂t

∣∣∣∣∣
scatt

= −3
va

c2 (ν̄+ − ν̄−)Kcr + 4
v2

a

c2 (ν̄+ + ν̄−)Pcr

= −
va

3κ+

[
fcr − va(εcr + Pcr)

]
+

va

3κ−

[
fcr + va(εcr + Pcr)

]
,

(3.51)

(3.52)
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while the CR energy flux integral evaluates to:

∂ fcr

∂t

∣∣∣∣∣
scatt

= −(ν̄+ + ν̄−) fcr + va(ν̄+ − ν̄−)(εcr + Pcr)

= −
c2

3κ+

[
fcr − va(εcr + Pcr)

]
−

c2

3κ−

[
fcr + va(εcr + Pcr)

]
,

(3.53)

(3.54)

where we define the spatial diffusion coefficients by:

κ± =
c2

3ν̄±
. (3.55)

In both equations the first line is the direct algebraic results of the calculation. The second line
emphasizes the symmetric properties of the scattering process with respect to the wave frames.

Let us give a few remarks concerning these terms and their dynamics:
• Eqs. (3.52) and (3.54) are Galilean invariant: only the flux in the respective wave frame

fcr ± 3a(εcr + Pcr) determines the magnitude of pitch-angle scattering and energy transfer.
Any lower-order approximation in 3a/3 loses this property.

• If the bulk of CRs are isotropic in one wave frame, corresponding to fcr = ±va(εcr + Pcr),
the scattering contribution of the corresponding wave type vanishes. This results becomes
evident by switching into one of the Alfvén waves frame: there the Alfvén wave consists
purely of a magnetic component. Accordingly, waves and CRs only interact via pitch-
angle scattering

∂ f
∂t

∣∣∣∣∣
scatt,wave

=
∂

∂µ

(
1 − µ2

2
ν(p, µ)

∂ f
∂µ

)∣∣∣∣∣∣
wave

. (3.56)

For an isotropic distribution ∂µ f |wave = 0 holds and hence no scattering takes place.
• Consider the following scenario where CRs are transported at a velocity greater than the

Alfvén velocity:

| fcr| ≥ 3a(εcr + Pcr). (3.57)

In this case, CRs lose energy by virtue of eq. (3.52) to one of the wave types. This in
turn will increase the scattering coefficient ν̄ ∝ εa and thus lead to stronger scattering
of CRs. This will continue until the CRs become isotropic in the corresponding wave
frame. This is the manifestation of the CR self-confinement idea. Formally speaking
CRs dynamically enforce that in equilibrium,

|ust| =

∣∣∣∣∣ fcr

εcr + Pcr

∣∣∣∣∣ . 3a (3.58)

and thus CR stream at most at the Alfvén speed. Translating this back into the distribution
components f0,1, this states that the Knudsen number is

Kn =

∣∣∣∣∣ f1(p)
f0(p)

∣∣∣∣∣ . 3a3 � 1, (3.59)

for most momenta. Hence, CRs are sufficiently confined such that their anisotropy is
small. We use this assumption a priori as our initial building block to expand the full dis-
tribution in its first two moments only. We can now justify this presumption a posteriori.
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• We derive the preceding argument macroscopically for the macroscopic quantities εcr

and fcr. On a microscopic level this certainly changes. As CRs with low and intermedi-
ate energies (T . 200 GeV) carry the bulk of CR pressure for distributions with ∝ f −α,
α > 4, this argument holds for them. This is the energy range, for which resonant CRs
sufficiently amplify Alfvén waves such that the argument even holds microscopically.
For CRs at higher energies, which have a much lower number density, the scattering by
self-provided Alfvén waves is not sufficient to efficiently scatter. These high-energy CRs
contribute little to the total amount of energy contained in CRs such that hydrodynami-
cally only low- and intermediate-energy CRs are of interest.

• We use eq. (3.43) as a grey approximation in our derivation. A more correct non-grey
approximation would be possible by introducing momentum-averaged scattering coeffi-
cients. To account for the different momentum integrals, we would have to introduce 7 of
those averaged coefficients. This zoo of new coefficients would obfuscate the derivation
and thus is ignored in this exploratory work.

• We use a handful of approximations to derive our new transport equations. Nonetheless
this approximation/derivation is compatible with previous studies: to connect our equa-
tions to previous work, we use the Chapman-Enskog expansion in the scattering terms.
Doing so in eq. (3.17) in combination with eq. (3.54) where the fast time scales are given
by L/c and κ/c2 yields

fcr = −
1

ν̄+ + ν̄−

c2b

3
·∇εcr + va

ν̄+ − ν̄−
ν̄+ + ν̄−

(εcr + Pcr). (3.60)

This is the equilibrium flux of CRs when CR inertia and pseudoforces can be neglected.
In practice, the actual time-dependent flux is near this equilibrium flux when CRs are
efficiently scattered. Back-inserting this into eq. (3.16) results in

∂εcr

∂t
+∇ · [(u + ustb)(εcr + Pcr) − κbb · ∇εcr] =

+(u + ustb) · ∇Pcr + 4
ν̄+ν̄−
ν̄+ + ν̄−

32a

c2 (εcr + Pcr), (3.61)

where

vst = va
ν̄+ − ν̄−
ν̄+ + ν̄−

b (3.62)

is the streaming velocity and

κ =
c2

3(ν̄+ + ν̄−)
(3.63)

is the total diffusion coefficient.
This equation coincides with the streaming-diffusion equation, modified by the inclusion
of the last term (Ko, 1992; Zweibel, 2017; Pfrommer et al., 2017). This term accounts
for the Fermi II process. This process always transfers energy from Alfvén waves to CRs
since both ν̄+ and ν̄− are positive.
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3.5. Alfvénic Turbulence

The result in the last section shows that it is crucial to know ν̄± to correctly understand the
scattering and hence the transport CRs. In particular, the relative balance between ν̄+ and ν̄−
regulates the streaming velocity and thus the macroscopic transport of energy. Since ν̄± ∝ εa,±

it is sufficient to know how the energy contained in Alfvén waves evolves to correctly evaluate
ν± in our grey approximation. In this section we recall the fluid equations of the macroscopic
transport of Alfvén wave energy and account for their interaction with CRs and the thermal
gas. To this end, we calculate the growth of wave energy by the gyro-resonant instability with
the same methods as we do for CR scattering. By reviewing the primary damping mechanisms
of waves, we formally couple the waves to the thermal gas.

3.5.1. Transport of Alfvén Waves

The macroscopic transport equation for the energy contained in a single wave mode can be
calculated using the action principle of Whitham (1961). Neglecting all nonlinear terms, this
results in (Dewar, 1970; Jacques, 1977):

∂E±(k)
∂t

+∇ · [(u ± 3ab) E±(k)] +
1
2

(∇ · u)E±(k) = Γ±(k)E±(k), (3.64)

where Γ±(k) are growth and damping rates of a single wave mode.
The interpretation of the hyperbolic part of this equation is straightforward: Alfvén wave

energy is transported with the total Alfvén velocity u + 3ab and is subject to adiabatic changes
with respect to the gas frame.

The hydrodynamic formulation can be obtained by integrating over all wave-numbers, which
yields with the definition of eq. (3.25) (Ko, 1992):

∂εa,±

∂t
+∇ ·

[
(u ± vab) εa,±

]
+

1
2

(∇ · u)εa,± = S gri,± − La,±, (3.65)

where we separated the total contributions of the gyro-resonant instability

S gri,± =

∫ ∞

0
dk Γgri,±(k)R±(k), (3.66)

and other loss processes

La,± =

∫ ∞

0
dk Γloss,±(k)E±(k). (3.67)

into different terms. We are now calculating these hydrodynamic terms, based on the respective
growth and damping rates Γ.

3.5.2. Gyroresonant Instability

The gyroresonant instability dynamically links CRs and Alfvén waves. It is the conceptional
inverse of momentum-diffusion. Trigged by any residual anisotropy of CRs in the wave frame,
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3.5. ALFVÉNIC TURBULENCE

this instability transfers energy between CRs and waves as a collective plasma-kinetic effect.
On a microscopic level these waves are excited as CRs gyrate around the mean magnetic field.
They can thus resonantly interact with electromagnetic fields of the same frequency as their
gyrofrequency.

The growth rate of this process is given by (see e.g. Kulsrud and Pearce, 1969):2

Γ±,st = ±π
Ω23a

εB

∫
d3 p

1 − µ2

2
p
(
∂ f
∂µ

+
b · u±

c
p
∂ f
∂p

)
δ ((µv ∓ 3a)k −Ω) , (3.68)

where u± are the wave velocities relative to the reference frames. As the comoving frame
is our reference frame, these velocities are given by u± = ±3ab. Performing the momentum
integral yields the actual growth-/damping-rate of a single wave mode. The resulting expres-
sion depends on the Doppler shifted CR-anisotropy ∂µ f ± p3a/c∂p f , evaluated at the momenta
corresponding to gyro-resonance.

We are here interested in the growth/damping of the total wave energy density. For this it
is inconvenient to evaluate the momentum integral directly. Employing our approximation of
sec. 3.4, we calculate eq. (3.66) to:

S gri,± = ±
3a

3κ±

[
fcr ∓ 3a(εcr + Pcr)

]
. (3.69)

The actual evaluation of both integrals is presented in the Appendix A.3.
By comparing this equation to eq. (3.52), we conclude that CR scattering and gyro-instability

conserves the energy in our theory. Again, this is owning to our approximation up to order
O(ν̄32a/c

2). Any lower-order theory is energy non-conserving, as the same terms in the CR
energy and Alfvén wave-energy equations appear formally at different orders.

3.5.3. Wave Damping Processes

Wave damping processes transfer energy from Alfvén waves to the thermal gas. Consequently,
these processes indirectly link CRs to the thermal gas. There is a variety of different phenomena
that can drain energy from the waves. Here we focus on the most important processes.

Ion Neutral Damping

Friction between ions and neutrals was the first damping process considered for counteract-
ing the gyroresonant instability (see Appendix C of Kulsrud and Pearce, 1969). It becomes
important in situations where there is a non-negligible amount neutrals present in the thermal
gas. When ions and neutrals drift with respect to each other, friction between the two species
de- and accelerates both species until they reach a dynamical equilibrium. Furthermore, ions
are subject to the Lorentz force provided by the Alfvén waves. In the case when the friction
and Lorentz forces can cancel each other, energy is transfered from the waves to the ions and
neutrals. In the end this process thermalizes wave energy and heats the gas.

2Most old literature sources describe the wave growth in their own wave frames and/or neglect the momentum
derivative of f , due to the u±/c factor in front of it. For an energy conserving result up to order u2

±/c
2 it is

necessary to fully account for the Doppler shift between wave and reference frame, as it is done here.
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We here consider a plasma composed of ions (i), neutral hydrogen (H) and neutral helium
(He). This situation is analyzed in detail by Soler et al. (2016). Let us first define the friction
coefficients between species β and β′ (Braginskii, 1965):

αββ′ = nβ nβ′ mββ′ σββ′
4
3

√
8kbT
πmββ′

, (3.70)

where T is the temperature (we assume that all plasma components are in local thermal equi-
librium), mβ is particle mass of species β, mββ′ = mβmβ′/(mβ + mβ′) is the reduced mass, kB

is Boltzmann’s constant, σββ′ is the momentum transfer cross section given by σiH ≈ 10−18m2

and σiHe ≈ 3× 10−19m2. With this definition, the rate at which Alfvén waves transfer energy to
the gas is given by:

Γin =
1
2

(
αiH

ρi
+
αiHe

ρi

)
, (3.71)

where ρi is the mass density of ions. In comparison to Soler et al. (2016) we neglect any
higher-order contribution of αββ′ to this rate. Because Γin is independent of wave number, we
can readily calculate the total loss term by ion-neutral damping to

Lin,± = Γin εa,±. (3.72)

This process operates efficiently when neutrals are abundant as αiH, αiHe ∝ nneutrals. Thus neutral
damping can be important in dense cold HI regions like in molecular clouds.

Nonlinear Landau Damping

As the name suggest, nonlinear Landau damping is a second-order process consisting of two
participating waves. Consider two Alfvén waves with wave numbers and frequencies, k1,2 and
ω1,2. They form together a beat wave that travels at speed,

3beat =
ω1 − ω2

k1 − k2
(3.73)

and drives a second-order magnetic pressure gradient that couples to a second-order ion sound
wave which in turn induces a longitudinal electric field (Hollweg, 1971). Charged particles in
the thermal gas can interact with this electric field, when the approximate gyroresonance

3th ≈ 3beat (3.74)

is fulfilled. Note that this is a gyroresonace between three participants as opposed to the CR
gyroresonace in sec. 3.2. Here a thermal particle resonates with the beat wave of two magnetic
perturbations, whereas in the CR gyro-resonance the particle resonates solely with a single
wave. The description of the associated transfer of energy is done in detail by Lee and Völk
(1973). Their full theory can be condensed and simplified for various astrophysical environ-
ments (Miller, 1991).

We can categorize pairs of Alfvén waves by their propagation direction along the mean mag-
netic field: they either propagate in the same direction or anti-parallel to each other. Nonlinear
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Landau damping between anti-parallel propagating waves is in general weaker (Miller, 1991)
such that we focus only on the damping of two waves propagating in the same direction. For
this case 3beat = 3a and the resonance condition in eq. (3.74) boils down to: 3th ≈ 3a. This
condition is fulfilled in plasmas with a high value βplasma by protons and other ions, whereas in
low βplasma plasmas only electrons can mediate the damping.

The rate at which waves lose energy by nonlinear Landau Damping is given by (Völk and
McKenzie, 1981):

Γnll,±(k) =

√
π

8
3th

εB
k
∫ k

0
dk′ E±(k′)., (3.75)

and is genuinely nonlinear through its dependence on E±(k). Nevertheless, we can insert this
rate into eq. (3.67) and formally perform the integration to

Lnll,± = αε2
a,± (3.76)

where the damping coefficient is given by,

α =

√
π

8
3th

εB
〈k〉, (3.77)

with an averaged wave number (Völk and McKenzie, 1981):

〈k〉 =
1
ε2

a,±

∫ ∞

0
dk kE±(k)

∫ k

0
dk′ E±(k′), (3.78)

which has to be of order as the CR gyroradius, as the first integral gives a larger weight to
waves with lower wavenumbers.

There is a small inconsistency in our theory. We assumed in sec. 3.4 a special algebraic form
for E±(k) in order to calculate the scattering terms. If we now insert eqs. (3.44) and (3.45)
with our choice q = 2 into eq. (3.78), the integral diverges at large wavenumbers. This is a
formal problem of our isospectral assumption for the intensities IL,R

± . In reality, these spectra
are not applicable for large wave numbers. There, only a few CRs resonate and the driving of
waves by the gyroresonant instability becomes weak. As driving becomes sub-dominant, all
sorts of damping become more important and the CR generated turbulence must enter its inertia
regime until it reaches its dissipation scales for larger wave numbers. There, our assumption of
isospectral intensities breaks down. In the end, eq. (3.78) can be safely evaluated because the
spectrum must become harder.

Turbulent Wave Damping

In the energy eq. (3.64) any nonlinear interaction is assumed to be small. Nevertheless, in
MHD turbulence and hence in Alfvénic turbulence energy is transfered to larger wavenumbers
by virtue of a cascade mediated by mode coupling. Lazarian and Beresnyak (2006) and Farmer
and Goldreich (2004) argue that the contributions of this cascade to the dynamical evolution
of εa,± cannot be neglected. We follow this suggestion and correct our simplified equations by
including the nonlinear damping of a single mode by an effective damping rate.
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The main difference between HD and MHD turbulence is the high anisotropy of the cascade
along the mean magnetic field. Consider a localized and elongated Alfvén wave packet with
parallel wavenumber k and perpendicular wavenumber k⊥. This wave is sheared perpendicular
to the mean magnetic field through the Lorentz force during its propagation. This leaves the
wave distorted (Lithwick and Goldreich, 2001). Consequently, the energy is transfered to larger
k and smaller k⊥. This process is thus energy conserving but removes energy from a specific
wave number k.

This damping operates on eddy turnover time scales and is minimized at the largest injection
scale. As the gyro-instability drives Alfvén waves, this scale is given by the gyro-radius of CRs:
rL ≈ 1/kmin. The associated damping rate is given by (Farmer and Goldreich, 2004; Zweibel,
2013):

Γturb ≈ 3akmin

√
kmhd,turb

kmin
, (3.79)

where kmhd,turb is the wavenumber at which the large-scale magnetic field is driven. Integrating
over the wave spectrum yields a total wave damping of

Lturb,± = Γturbεa,±. (3.80)

Turbulent Linear Landau Damping

So far we assumed that the Alfvén waves are purely propagating parallel to the mean magnetic
field lines. This mean magnetic field is turbulent and hence constantly changes its directions.
Strong curvature in the magnetic field can shift the wave propagation mode from a parallel
one to a slightly oblique one. By Ohm’s law this obliquity introduces a small electric field
component of the wave along B. Thermal particles get accelerated by this field and thus the
thermal gas is heated.

Because this effect again depends on the actual nature of turbulence, we treat it only approx-
imately. The rate at which energy is lost can be written as (Zweibel, 2017):

Γll ≈ −

√
π

4
3ak‖,min

√
βplasma

kMHD,turb

k‖,min
. (3.81)

Because this rate is independent of k, we can readily integrate it over the wave spectrum to get
a total wave energy loss term of

Lll,± = Γllεa,±. (3.82)

By comparing eqs. (3.81) and (3.79), we conclude that both loss processes introduced by the
MHD turbulence have approximately the same strength (e.g., turbulent linear Landau damping
is more dominate when βplasma ' 16/π ≈ 5).

3.6. CR-MHD Equations

So far, we treat the MHD quantities as passive external components of our theory. As discussed
in the last section, CRs and the thermal gas interact indirectly through electromagnetic fields.
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To account for this coupling we combine MHD and CR fluid equations in this section to a
combined set of CR MHD equations.

3.6.1. Coupling to the thermal gas

The most dominant interaction between both particle species is through the Lorentz force me-
diated by the large scale magnetic field. To formally describe this we rewrite the momentum
equation in (2.12) in its original form:

∂(ρu)
∂t

+∇ · (ρuu + Pth1) =
jgas ×B

c
+ fponder, (3.83)

where jgas is the current of the gas and fponder is the pondermotive force density.
A fully correct CR transport theory in the limit O(32a/3

2) would introduce a variety of MHD
inertia terms into the comoving eq. (3.1) (Zank, 2014). We implicitly neglected these and
thus assumed a coupling between CRs and thermal particles in the Newtonian limit. To be
consistent, we have to formally describe the momentum and energy balance between the two
in the same limit.

In the Newtonian limit the CR fluid is an ordinary fluid and can be described by a momentum
equation similar to the one for the thermal gas. In particular, we have for the momentum
component parallel to the magnetic field:

ρcr

(
∂ucr

∂t

)
⊥

+ ρcr (ucr ·∇ucr)⊥ +∇⊥Pcr =
jcr ×B

c
. (3.84)

Because CRs have a low number- and hence mass-density, they exhibit low inertia. They
are thus strongly affected by any macroscopic force. Consequently, they try to reach a force
equilibrium between forces exerted by themselves and external ones. We can neglect both
inertia terms in eq. (3.84) and proceed with the force balance:

∇⊥Pcr =
jcr ×B

c
. (3.85)

Both momentum equations are linked by the occurring Lorentz forces and Ampere’s law

∇ ×B =
jgas + jcr

c
. (3.86)

Replacing jgas in eq. (3.83) and combining the result with the CR force balance yields an ex-
pression for the Lorentz force exerted on the gas:

fLorentz =
jgas ×B

c
=∇ ×B ×B −∇⊥Pcr. (3.87)

The dynamics of CRs along the magnetic field is extensively discussed in sec. (3.4). We
obtain a definition for CR momentum parallel to the mean magnetic field by rewriting the
definition of the CR energy flux density in eq. (3.13) in the ultra-relativistic limit:

ρcrucr,‖ =
1
c2 fcr. (3.88)
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Our derivation of scattering is done in the semi-relativistic limit of (32/c2). This implies that
our descriptions of energy and hence momentum transfer between Alfvén waves and CRs are
valid on short time scales. To get a consistent treatment, we have to describe all participants
of the total momentum balance at the same order. Since we couple MHD and CR quantities in
the O(1) limit, we have to downgrade the CR dynamics to this order. We do so by using the
Chapman-Enskog expansion of eq. (3.17), to get the force balance along the mean magnetic
field in the O(1) limit:

1
3
∇‖εcr =

∂(ρcrucr,‖)
∂t

∣∣∣∣∣
scatt

, (3.89)

or equivalently, using the equation of state (3.12):

∇‖Pcr =
∂(ρcrucr,‖)

∂t

∣∣∣∣∣
scatt

. (3.90)

The scattering and hence the momentum transfer happens between Alfvén waves and CRs. But
the amplification of Alfvén waves induces a dielectric current which can then interact with the
thermal gas (Achterberg, 1981). The force density exerted on the thermal gas by this effect is
called ponderomotive force density and is given by:

fponder = −∇
(
Pa,+ + Pa,−

)
−∇‖Pcr. (3.91)

By the first law of thermodynamics, each conservative force is accompanied by a work done
on the surroundings. For the thermal gas we can derive the associated work terms by mul-
tiplying eq. (3.83) by u and using the continuity equation. This yields the equation for the
mechanical energy:

1
2

∂
(
ρu2

)
∂t

+∇ ·
[
ρu

(
u2

2

)]
= 4th + 4ponder + 4lorentz, (3.92)

where the volume work done by each of the forces are:

thermal gas pressure: 4th = −u ·∇Pth,
ponderomotive force: 4ponder = −u ·∇(Pa,+ + Pa,−) − u ·∇‖Pcr,

Lorentz force: 4lorentz = +u · (∇ ×B ×B) − u ·∇⊥(Pcr).
(3.93)

The above arguments heavily depend on the O(1) limit while we described scattering of CRs
up to O(32a/c

2). This inconsistency can be removed also by treating both the couplings to the
second order. As we formulate CR hydrodynamics in the gas rest frame, this would require
a more sophisticated handling of the geometric transport terms to correctly account for the
change into a non-inertial frame. Indeed, even the first order (O(3a/c)) adds terms proportional
to du /dt and db /dt , where d/ dt = ∂/∂t+u·∇ is the convective derivative (Zank, 2014). This
would not only obfuscate our theory but also precludes a transparent analytical and numerical
analysis of the resulting equations. We refrain from doing so and leave possible improvements
for subsequent work. Nevertheless, this limits the applicability of our theory to cases where the
relevant time scale Tc/3a is larger than the shortest scattering time scale c2/32a/ν considered.
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3.6.2. Full set of CR-MHD Equations

Because equations describing the thermal gas and CRs are scattered throughout this work, we
collect them here to provide an overview. The equations for ideal MHD coupled to non-thermal
CR and Alfvén wave populations are given by:

∂ρ

∂t
+∇ · (ρu) = 0 (3.94)

∂ρu

∂t
+∇ · (ρuu + Ptot1 −BB) = 0 (3.95)

∂B

∂t
+∇ · (Bu − uB) = 0 (3.96)

∂ε

∂t
+∇ · [u(ε + P) − (u ·B)B] = −u · ∇(Pcr + Pa,+ + Pa,−)

+ La,+ + La,−. (3.97)

The total and gas pressures are given by:

Ptot = Pth +
B2

2
+ Pcr + Pa,+ + Pa,−, (3.98)

P = Pth +
B2

2
, (3.99)

where Pth is the thermal pressure, Pcr is the CR pressure and Pa,± are the ponderomotive pres-
sures due to presence of Alfvén waves. The total energy density contained in the large scale
magnetic field and the thermal gas is

ε =
ρu2

2
+ εth + εB, (3.100)

where εth and εB = B2/2 are the thermal and magnetic energy densities. La,± are the source
terms of thermal energy due to Alfvén wave energy losses as detailed in sec. 3.5. All pressures
and energy densities are related by the respective equations of states:

Pth = (γth − 1)εth, γth =
5
3
, (3.101)

Pcr = (γcr − 1)εcr, γcr =
4
3
, (3.102)

Pa,± = (γa − 1)εa,±, γa =
3
2
. (3.103)

These equations describe how all MHD quantities evolve in the presence of CRs and Alfvén
waves. Our contribution to the full system are the equation describing the evolution of the CR
and Alfvén waves energies. Collecting the corresponding eqs.(3.16), (3.17), (3.52), and (3.54)
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gives:

∂εcr

∂t
+∇ · [u(εcr + Pcr) + b fcr] = u · ∇Pcr (3.104)

−
3a

3κ+

[
fcr − 3a(εcr + Pcr)

]
+
3a

3κ−

[
fcr + 3a(εcr + Pcr)

]
,

∂ fcr

∂t
+∇ · (u fcr) +

c2

3
b · ∇εcr = −(b · ∇u) · (b fcr) (3.105)

−
c2

3κ+

[
fcr − 3a(εcr + Pcr)

]
−

c2

3κ−

[
fcr + 3a(εcr + Pcr)

]
,

∂εa,±

∂t
+∇ · [u(εa,± + Pa,±) ± 3abεa,±

]
= u · ∇Pa,±

[
fcr ∓ 3a(εcr + Pcr)

]
− La,±. (3.106)

Our closure of the CR-Alfvénic subsystem is a grey approximation for the CR diffusion coeffi-
cient:

1
κ±

=
9π
8

Ω′

c2

εa,±/2
εB

(
1 +

232a
c2

)
, (3.107)

where Ω′ = Z′eB/(γ′mc) is the relativistic gyro frequency of typical member of the CR popu-
lation with charge Z′ and characteristic Lorentz factor γ′ and particle rest mass m.

We can check the physical plausibility of our set of equations by the following argument:
the total energy density contained in the thermal gas, magnetic fields, CRs, and Alfvén waves
is given by

εtot =
ρu2

2
+ εth + εB + εcr + εa,+ + εa,−. (3.108)

By adding all of the above energy equations, we see that the total energy Etot =
∫

d3x εtot is
conserved as its density follows a conservation law:

∂εtot

∂t
+∇ · Ftot = 0, (3.109)

where the total energy flux is given by:

Ftot =u(εtot + Ptot) + b[ fcr + 3a(εa,+ − εa,−) − (u ·B) B]. (3.110)

This is a necessary result, as we excluded any external sources of CR/thermal/Alfvén wave
energy and solely focused on the transport of CRs and Alfvén waves. Consequently, there are
only processes that exchange energy among the subsystems.

3.7. Relation to Radiation Hydrodynamics

We briefly recall the derivation of the equations of radiation hydrodynamics. We describe
radiation by its specific intensity I = I(x,n, ν), which is defined as the energy that is radiated
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n

dΩ

ds

n

dΩ

dA

Figure 3.2.: On the definition of the specific intensity I and its scattering in a slab of length ds .

through a surface dA at a point x into a solid angle dν along the direction n in the frequency
interval dν while dt elapses (see Fig. 3.2):

dE = I(x,n, ν)n · dA dΩ dν dt (3.111)

We can define the first 2 direction moments of radiation as[
J
H

]
=

1
4π

∫
dΩ

[
1
n

]
I(n), (3.112)

where J is the mean intensity and H is the monochromatic flux.
After neglecting true absorption and thermal sources of radiation, the transfer equation for

radiation written in its specific intensity reads:

1
c
∂I
∂t

+ n ·∇I =
1
c
∂I
∂t

+
∂I
∂s

= σ (S − I) , (3.113)

where σ = σ(n) is the scattering coefficient and S is the source function, which accounts for
radiation that is scattered from a direction n′ into the ray that is directed along n.

Scattering is mediated by the particles of the thermal gas. For processes such as Thomson
scattering the interaction itself and hence the scattering coefficient are isotropic in the frame
of the thermal gas. In contrast, the transfer equation is completely written in lab frame. In
this frame scattering is highly anisotropic because the boost between lab and comoving frame
induces an additional directional dependence of the scattering. This directional dependence
introduces another difficulty while solving the equation. There are two possible ways of how
to proceed (Mihalas and Weibel Mihalas, 1984): For the first possibility, we would have to re-
formulate the complete transfer equation in the comoving frame of the gas. This would remove
the strong n dependence of the right hand side. Nevertheless, we would get many pseudoforces
and other terms from the transformed space and time derivatives because the whole equation
would have to be transformed. This is done in Buchler (1979) where the comoving transfer
equation is used to derive the comoving equations of radiation hydrodynamics in full extent.
We use a similar procedure in the main text to get a transport equation for CRs and the cor-
responding scattering in the comoving frame. For the sake of simplicity, here we use another
procedure for radiation which relies on an expansion of the right hand side in the small value
u/c. We cite the transformed transfer equation from Mihalas and Klein (1982) in order O(u/c)

45



CHAPTER 3. THEORY OF COSMIC RAY HYDRODYNAMICS

to proceed with:

1
c
∂I
∂t

+ n ·∇I = σ0 (J − I) + σ0
n · u

c

(
2J − ν

∂J
∂ν

+ I
)
− σ0

u

c
·

(
H − ν

∂H

∂ν

)
, (3.114)

where quantities with a subscript 0 are measured in the comoving frame. We further use the
original grey-approximation and neglect any frequency dependence, i.e., σ0 = const (which is
given, e.g., for Thomson scattering).

We now approximate this equation through the first two thermodynamical moments in n.
Thus, we define the radiation energy density

Erad =

∫ ∞

0
dν

∫
dΩ I/c =

4π
c

∫ ∞

0
dν J (3.115)

and the flux density of radiation energy as

Frad =

∫ ∞

0
dν

∫
dΩnI = 4π

∫ ∞

0
dνH . (3.116)

Similar to the derivation in the main text, we calculate the evolution equations for these quanti-
ties by taking appropriate moments of eq. (3.114). Integrating eq. (3.114) over solid angle and
frequency gives:

∂Erad

∂t
+∇ · Frad = −

σ0

c
u · Frad. (3.117)

Surprisingly, this equation contains a source term of radiation energy even though we neglected
any true absorption and other sources of radiation. This term accounts for the different frames
and is a consequence of the O(u/c) expansion. Only the energy in comoving frame should be
conserved by the scattering but not the radiation energy Erad in the lab-frame.

Taking the cn moment requires care. We use the original Eddington-approximation to pro-
ceed and assume that

I(n) = I0 + n · I1. (3.118)

Thus, we can decompose the intensity into a characteristic direction and an isotropic part. Using∫
dΩnn =

4π
3

1, (3.119)

we evaluate the cn-moment of eq. (3.114) to

∂Frad

∂t
+ c2∇ · Prad = −cσ0 [Frad − u · (Erad1 + Prad)] , (3.120)

where the radiation pressure tensor is given by: Prad = Erad1/3. We justify the Eddington
approximation from this equation in some limits: if the scattering is strong, the right-hand side
dominates and radiation evolves towards isotropy in the comoving frame. This in turn allows
us to expand the intensity into its directional components because |I1| ∼ |u|/v. As the near-
isotropy of radiation implies that higher directional moments become less import, the expansion
in eq. (3.118) is justified. Furthermore, if the photon inertia is dynamically less important in
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comparison to their scattering, we can use the Chapman-Enskog expansion in eq. (3.120). This
yields Frad ≈ uErad +u ·Prad = 4uErad/3, which corresponds to a flux of a relativistic fluid with
γrad = 4/3. This flux corresponds to a boosted flux Frad|gas = 0 in the gas frame.

Inserting this flux into the radiation energy eq. (3.117) yields a nonvanishing source term
on the right-hand side. However, this implies that radiation energy is lost even in the apparent
equilibrium case. This surprising results was not discussed by Mihalas and Klein (1982) and
contradicts the inherent necessity of elastic scattering to be energy conserving. This flaw is
partially corrected by Lowrie et al. (1999). They give a Galilean-invariant result for eqs. (3.117)
and (3.120) in their eqs. (32a) and (32b).

Our derivation of the CR equations was highly inspired by the one presented here. Any step
taken to transform from RT to RHD has a corresponding analogy in the main text, where we de-
rive our equations of CRHD from the Vlasov-equation. Thus, unsurprisingly, both eqs. (3.117)
and (3.117) carry a strong resemblance with our CR equivalents in eqs. (3.104) and (3.105).
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4 Numerics of Cosmic Ray Hydrodynam-
ics
Analysis of eqs. (3.106), (3.105), and (3.104) is rather difficult due to its nonlinear nature. In
the previous section, we inferred some general features concerning the general propagation of
CRs using asymptotical arguments. We use this section to introduce a finite volume method
and apply it in a few numerical simulation to substantiate those claims.

To this end, we cast our equations in the standard form for hyperbolic equations with source
terms and then describe a general-purpose algorithm to integrate equations of this form. The
actual equations for the CR dynamics can then be obtained by inserting the specific terms.

We focus our attention on a constant background medium (ρ = const, T = const, u = 0)
where the magnetic field is directed along the x-axis (B = B0, x = const). In this setting, we
are able to investigate the dynamics of CRs in an isolated manner. As laid out in sec. 3.6, the CR
and MHD equations are non-trivially coupled. This complicates the analysis of the emerging
dynamics. We assume that the magnetized background medium is at rest and postpone studies
of the dynamical impact of CRs to furture work. As such, our choice of MHD quantities remain
constant for all times.

4.1. Finite Volume Method

In this simplified scenario the equations have numerical standard form:

∂U

∂t
+
∂F (U )
∂x

= S(U ), (4.1)

where the state and flux vectors are given by

U =


εcr

fcr

εa,+

εa,−

 , F (U ) =


fcr

c2εcr/3
+3aεa,+

−3aεa,−

 , (4.2)

while the sources are given by

S(U ) =



−
3a

3κ+
( fcr − 3aγcrεcr) +

3a
3κ−

( fcr + 3aγcrεcr)

− c2

3κ+
( fcr − 3aγcrεcr) − c2

3κ−
( fcr + 3aγcrεcr)

+
3a

3κ+
( fcr − 3aγcrεcr) − αε2

a,+ + S inj

−
3a

3κ−
( fcr + 3aγcrεcr) − αε2

a,− + S inj


. (4.3)

Here, we included another source term of Alfvén waves, denoted by S inj. The reason for its
presence is twofold: 1) it accounts for unresolved sources of Alfvén waves. The main ex-
ample for these sources are SNRs, where CRs stream away from the shock and thus generate
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Alfvén waves on a subgrid level, and 2) it prevents the Alfvén wave energy densities to become
negligibly small by introducing an antagonist to the damping processes.

We can perform the spatial derivative in eq. (4.1) and get the transport equation in its advec-
tive form:

∂U

∂t
+ A(U )

∂U

∂x
= S(U ), (4.4)

where the matrix A carries all the information about the transport of U . We can formally de-
compose this matrix into its characteristic speeds by calculating its eigenvalues. With each of
those speeds one characteristic component of U is transported. In general, this component is
difficult to derive and not necessarily an entry of the vector U but a function of those. Mathe-
matically we can calculate the characteristic speeds by calculating the eigenvalues of A. In our
case, the spectrum and hence the set of all eigenvalues, of A is given by:

σspec (A(U )) =

{
+3a,−3a,+

c
√

3
,−

c
√

3

}
. (4.5)

We can associate the propagation of the corresponding wave energy to both Alfvén velocities.
Whereas the characteristic speeds ±c/

√
3 are associated with the relativistic transport of CRs.

Here, the speeds are constant and do not depend on U , which is in general not the case (see
e.g., the equations of hydrodynamics where u and u± cs are the characteristic velocities, which
depend on the local velocity u). The most important velocity of those is the characteristic
velocity which has the largest magnitude. In mathematics this quantity is called the spectral
radius and reads in our case:

ρspec = ρspec (A(U )) =
c
√

3
. (4.6)

The spectral radius has a physical interpretation: it is the largest velocity with which localized
information can be propagated. Hence, a point x has only a causal influence within the cone
that is given by x ± ρspect. If ρspec depends on U , this geometrical shape is more complicated
but the qualitative result remains the same: only inside this causal region that is spanned by
the fastest characteristic velocity the evolution can influence any physical quantity described
by eq. (4.1).

The underlying idea of finite volume methods is to describe the state vector U not as a
complicated function of space and time, but by spatial averages over specified regions at certain
times tn. The spatial average of U over an interval [xi− 1

2
, xi+ 1

2
] with length ∆xi = xi+ 1

2
− xi− 1

2
at

time tn is

U n
i =

1
∆xi

∫ xi+ 1
2

xi− 1
2

dxU (x, tn). (4.7)

We call the interval [xi− 1
2
, xi+ 1

2
] a computational cell centered at xi = (xi− 1

2
+ xi+ 1

2
)/2 or just the

cell i. Sometimes it is helpful to consider U n
i as the value of U in xi although this is not the

case in general. In the special case where U is a linear function inside the cell i, this is true.
We can integrate eq. (4.1) over [xi− 1

2
, xi+ 1

2
] and [tn, tn+1] to see how the averaged states evolve

over a time step ∆t = tn+1 − tn. The result is:

U n+1
i = U n

i − ∆t
Fi+ 1

2
− Fi− 1

2

∆xi
+ ∆tSi, (4.8)
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xi− 1
2

xi+ 1
2

xi

t = tn U n
i

x

Figure 4.1.: Geometry of the finite volume method.

where we defined the averaged fluxes and sources as:

Fi+ 1
2

=
1
∆t

∫ tn+1

tn
dtF (U (xi+ 1

2
, t)), (4.9)

Si =
1

∆t ∆xi

∫ tn+1

tn
dt

∫ xi+ 1
2

xi− 1
2

dxS(U (x, t)). (4.10)

Eq. (4.8) is a trivial formal solution to eq. (4.1). At this point we cannot calculate the next
state U n+1

i based on the information given by the current U n
i , we would need to know the

particular and full solution U (x, t) to calculate the occurring averages in eqs. (4.9) and (4.10).
This problem is the starting point of so-called Godunov methods, which we will describe now.
Here, we just state one possible Godunov method, which is straight forward to implement
and versatile enough to use it for most problems. The general idea behind those methods
is to approximate eq. (4.9) based on the states left and right of a cell interface (UL and UR,
respectively). In a first step, we evaluate the flux integral by its time-centered value

Fi+ 1
2
≈ F

(
U

(
xi+ 1

2
, tn +

∆t
2

))
, (4.11)

and thus shift our task to finding an approximation for the state at the interface that is given
at the half-step. The interface value U

(
xi+ 1

2
, tn + ∆t

2

)
may not be single-valued as the function

U
(
x, tn + ∆t

2

)
may have a discontinuity at xi+ 1

2
. We thus have to find an appropriate replacement

for Fi+ 1
2
. Riemann solvers are best suited for this task and calculate a flux based on the two

values at the interface:

Fi+ 1
2
≈ F(UL,UR), (4.12)

where UL,R are evaluated at t = tn + ∆t/2.

Step 1: Reconstruction The most obvious choices for the left- and right-sided states of an
interface are the corresponding mean-values in the neighboring cells:

UL = U n
i , (4.13)

UR = U n
i+1, (4.14)

even at the half step. These completely valid choices lead to a stable numerical algorithm with
a resulting L1-error

errorL1 =
∑

i

|Ui − U(t, xi)| (4.15)
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Figure 4.2.: Slope limiter of the finite volume method. The gradients on the left-hand side
introduce no new extrema at the cell interface, whereas this is the case with the
gradients on the right-hand side.

which behaves as errorL1 ∝ ∆x. We could proceed with this but refrain from doing so: the
numerical solutions computed with this algorithm suffer from excessive numerical diffusion.
All sharp features that are present in the solution are quickly spread. An algorithm that leads
to a scheme with an error errorL1 ∝ ∆x2 and preserves features is fundamentally rooted in the
reconstruction of U(x, tn) based on the mean values Un

i (Van Leer, 1997).
The basic idea is to strive for a better representation of the function U (x, t) inside a compu-

tational cell. To this end, we interpolate the function based on its averages over neighboring
cells. If we evaluate a linear interpolation at the boundaries we have:

U n
i,± = U n

i ±
∆xi

2
∇Un

i , (4.16)

where ∇Un
i is a suitable approximation of the actual gradient. Generally, there are many

possible ways to calculate such an gradient. In order to construct a stable numerical scheme,
it is necessary to chose ∇Un

i such that over-/undershoots at cell boundaries are avoided (see
Fig. 4.2). This would introduce new extrema into the reconstruction and cast our algorithm
more dispersive. In the worst case (e.g., for velocities near 0) this could lead to an erroneous
inversion of the propagation direction. In order to prevent over-/undershoots, slope limiters are
used. In their simplest form, which we use here, they calculate an approximation of the gradient
that avoids over-/undershoots based on the left- and right-sided difference-approximation of the
gradient. One of those is the minmod-limited gradient given by:

∇Un
i = minmod

(
U n

i −U
n
i−1

xi − xi−1
,
U n

i+1 −U
n
i

xi+1 − xi

)
. (4.17)

The minmod-function given for a scalar rads as:

minmod(a, b) =
sign(a) + sign(b)

2
min(|a|, |b|), (4.18)

while the minmod-function is evaluated component-wise for vector-arguments. This slope lim-
iter picks the gradient with the smallest magnitude of the left- and right-sided gradients if both
share the same sign.

The author studied several different slope limiters and found this to be the most robust limiter,
while other theoretically valid slope limiters tend to fail in practice.
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Fi+ 1
2
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2

Figure 4.3.: Schematic representation of the flux exchange. To advance and simultaneously
conserve

∫
dx U in the simulation volume, the fluxes have to be defined on and

shared with cells neighboring an interface.

Step 2: Space-Time Predictor To evaluate the flux at the half-step, we need to know what
are the interface values at this time. For this we use the Hancock Space-Time Predictor, that
evolves the extrapolated values as:

U
n+ 1

2
i,± = U n

i,± −
∆t
2

F (U n
i,+) − F (U n

i,−)

∆xi
+

∆t
2

S
(
U

n+ 1
2

i,±

)
. (4.19)

In addition to the original version of the predictor we added the source terms in a implicit
fashion. Note that although this predictor resembles eq. (4.8), it is manifestly different. Here,
the state is updated using purely information attributed to a single cell. In contrast, the fluxes
in eq. (4.8) are the same for neighboring cells. Based on this, our full scheme exchanges fluxes
of conserved quantities between neighboring cells. This conserves physical quantities inside
the computational domain, e.g., energy. However, this is not true for the predicted states in
eq. (4.19).

In practice, it is advantageous to use a predictor, as it is purely local. This means that no
values need to be communicated with neighboring cells.

By neglecting this step, our scheme would be formally accuarate to first order. Nevertheless,
excessive numerical diffusion is already avoided by solely using the reconstructing described
in the last step.

Step 3: Flux calculation We are now equipped to finally calculate the flux in eq. (4.8).
Based on the states to the left and right of an interface, Riemann solvers calculate a flux as
a solution of the emerging Riemann problem at the interface (denoted as if the interface was
placed at x = 0):

∂U

∂t
+
∂F (U )
∂x

= 0, (4.20){
U(x, 0) = UL, x < 0,
U(x, 0) = UR, x > 0 (4.21)
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In general, the solution can be complicated, which is the reason why approximative Riemann
solvers are used in real-world applications. We choose the versatile HLLE Riemann solver:

Fi+ 1
2

= FHLLE

(
U

n+ 1
2

i,+ ,U
n+ 1

2
i+1,−

)
, (4.22)

Fi− 1
2

= FHLLE

(
U

n+ 1
2

i−1,+,U
n+ 1

2
i,−

)
, (4.23)

where the flux is calculated using:

FHLLE(UL,UR) =
S RF (UL) − S LF (UR)

S R − S L
−

S LS R

S R − S L
(UL −UR) . (4.24)

The signal speeds S L ≤ 0 and S R ≥ 0 are given below. The first term is a linear combination
of both left- and right-sided fluxes at the interface. It can be seen as a weighted mean between
the two, which prefers the most dynamically important flux. The second term is the so-called
diffusion term. It introduces numerical diffusion at places were the solution is discontinuous.
This diffusion is necessary for convergence in a physical and mathematical sense. Physically,
because it is responsible for convergence to an entropy-satisfying solution, i.e., where the sec-
ond law of thermodynamics holds. Mathematically, as the small amount of diffusion smooths
occurring oscillations that could prevent convergence to the solution.

In their original work, Harten et al. (1983) (HLL in HLLE) did not specify how to calculate
both wave speeds. The introduced ambiguity is twofold: first, the true wave speeds are not
known a priori and need to be calculated based on the Riemann problem. This requires a
solution of the Riemann problem, which can be computationally expensive. Second, one can
use estimates for the wave speeds. There are many estimates that result in stable and converging
numerical algorithms. We stick to the Einfeldt (1988) (E in HLLE) wave speeds estimates
which are given by:

S L = min
(
0,minσspec (A(UL)) ,minσspec

(
A

(
UL + UR

2

)))
, (4.25)

S R = max
(
0,maxσspec (A(UR)) ,maxσspec

(
A

(
UL + UR

2

)))
. (4.26)

Step 4: Final Time Advance With the calculated inter-cell fluxes, we can finalize the
timestep of eq. (4.8):

U n+1
i = U n

i − ∆t
Fi+ 1

2
− Fi− 1

2

∆xi
+ ∆tS

(
U n+1

i

)
, (4.27)

where we approximate the source term in an implicit manner.
In order to get a stable numerical algorithm we have to restrict the admissible time steps

∆t. For our hyperbolic scheme, we have to fulfill the local Courant-Friedrichs-Lewy (CFL)
condition in its classical variant:

∆ti

∆xi
= CFL × ρspec (A(U )) , (4.28)
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where the condition

0 < CFL <
1
2

(4.29)

for CFL number must hold. This condition implies a global time step of:

∆t = min
i

∆ti. (4.30)

The CFL-condition has a physical interpretation. It ensures that the fastest wave can not be
transported faster than one computational cell per timestep. If this condition would be violated,
our flux calculation between neighboring cells becomes unphysical. In this case information
could be transported from a cell to the cell after the next, while jumping over the actual neigh-
boring cell. We did not account for this case in our flux calculation and thus have to obey to the
CFL-condition to obtain plausible results.

4.2. Treatment of the Source Terms

Due to the high dynamical range of time scales in the source terms, an implicit implementation
of them is necessary as shown in eqs. (4.27) and (4.19).

Inserting the actual source terms in eq. (4.3) renders these equations to become nonlinear.
Hence, there can be no general solutions or the solution can be numerically expensive to com-
pute. For the case of an existing solution there are different numerical techniques to calculate
an approximative one. As the source terms themselves are straight forward to calculate, we
use the Newton-Raphson method to approximate the solution of eqs. (4.19) and (4.27). The
starting point of this method are equations of the form

F (s) = 0. (4.31)

We can simply recast our eqs. (4.19) and (4.27) into this form by subtracting either the left-hand
or the right-hand side.

The Newton-Raphson method calculates successively better estimates for the roots of a func-
tion F by iterating the following recursion formula:

sk+1 = sk − [DF (sk)]−1F (sk), (4.32)

where DF is the Jacobian of the function. This iteration needs an initial guess s0. For implicit
numerical differential equations such as eqs. (4.19) and (4.27), the state vector of the current
time step is a good initial guess, as it is readily available and likely close to the root. We thus
adopt the initial guess for the iterations of eq. (4.27) according to

s0 = U n
i . (4.33)

To understand the Newton-Raphson method, we visualize it in the left-hand side of Fig. 4.4
for an one dimensional problem. Here, the method extrapolates a better guess for the root by
walking down the gradient towards smaller values of F. As a result, this the iteration quickly
converges towards the root. In higher dimensions, this is not the case (see right-hand side of
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Figure 4.4.: Newton Raphson Method in multiple dimensions. Left: The one dimension case.
We show the iteration of f (s) = s − 20 s3 with initial guess s0 = 1 Right: The two
dimension case with F (s) = ((sx−1.5) abs(sin(x))+5s2

y , s
2
y) and initial guess (2, 1).

We display the first component of the function using equidistant contour lines.

Fig. 4.4). There, the step is in general not aligned with the gradient. This is apparent in the first
step, which moves obliquely to the gradient of the first component of F (the gradient is always
perpendicular to contour lines). Nevertheless, the iteration lowers F (sk) successively until it
reaches the inner plateau of the function, where the root resides.

In principle the iteration aims at finding the correct root of F , i.e., a sk such that F (sk) = 0.
Because this is hard to achieve with floating point numbers that we used to implement the
method on a computer and even computationally costly to achieve, we replace this formally
correct end of the iteration by a softer criterion, i.e., instead we abort the iteration if

||F (sk)|| < 10−9, (4.34)

where || · || is some norm. In practice either the L1-norm or the L2-norm are used. We adopt
the L1-norm, as it avoids numerically expensive multiplications and can be quickly calculated.
Note that no extra evaluation of F (sk) is needed, as it needs to be calculated for the next
iteration step in eq. (4.32).

There are some caveats to the general use of the Newton-Raphson method. This method
does not always converge. There are some popular examples of functions F , where the method
oscillates around a root but never converges. This can be cured by using a modified versions
and replacing [DF (sk)]−1 by h [DF (sk)]−1 with relaxation parameter h < 1 . This parameter
allows for smaller jumps during an iteration, which can help to achieve convergence at the cost
of a slower progress. For the case of CRHD we do not use this relaxation. Furthermore, the
method iterates towards any root and there is no guarantee that it convergences to a physically
admissible root. For our example, this could result e.g., in negative energies. However, because
our source terms are mildly non-linear, obtaining negative energies is highly unlikely as we
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Table 4.1.: Adopted numerical models for our simulations.
name initial condition cred χ α S inj

gauss gaussian 100 5 × 107 5 × 1010 1 × 10−8

gauss slow gaussian 10 5 × 107 5 × 1010 1 × 10−8

low damp gaussian 100 1 × 106 1 × 1011 5 × 10−6

int damp gaussian 100 1 × 106 5 × 1011 5 × 10−6

hig damp gaussian 100 1 × 106 1 × 1012 5 × 10−6

box box 100 5 × 107 5 × 1010 1 × 10−8

box slow box 10 5 × 107 5 × 1010 1 × 10−8

start the iteration with a physically admissible state.

4.3. Exemplary Problems

With our numerical method in place, we now describe and discuss our actual simulations.
Instead of using fractions c/3a that are realized in physical environments (under ISM condi-

tions: 3a ∼ 30km/s; under IGM conditions: 3a ∼ 100km/s), we use a reduced-speed-of-light
approximation (Gnedin and Abel, 2001; Gnedin, 2016). To this end, we adopt a reduced speed
cred � c for the physical speed of light c in eq. (4.2). We use this approximation since it can
be justified as an asymptotic limit: as long as the order of time scales associated with Alfvén
and light velocities remain the same for a reduced speed of light, the dynamics should not
change. In our case, the equilibrium fluxes fcr = ±3a(εcr + Pcr) must be realized faster than the
time scale given by the Alfvén velocity: L/3a, where L is a typical CR gradient length. More
practically, this approximation reduces the computational costs dramatically because the time
step in eq. (4.28) can be increased. Therefore, we need less iterations and thus less wallclock
time of our numerical method to reach a certain time T . Nevertheless, we have to check if this
unphysical approximation is applicable.

To start the simulation we use the two initial conditions:

gaussian:


g(x) = exp(−40x2),
εcr(x) = 10 + g(x),
fcr(x) = γcrsgn(x)g(x)εcr(x),
εa,±(x) = (1 + g(x)) × 10−6,

box:


g(x) = 1[−1/4,1/4](x),
εcr(x) = g(x),
fcr(x) = γcrsgn(x)εcr(x),
εa,±(x) = (1 + g(x)) × 10−6,

(4.35)

where 1A is the characteristic function of a set A.
Both initial conditions model a localized CR population that streams away from their sym-

metry axis with Alfvén velocity. We further assume that there is a constant pool of Alfvén
waves of both propagation directions present while the populations are supported by an in-
creased amount of Alfvén wave energy.

Throughout the rest of this section we use code units (3a = 1) and rewrite the diffusion
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Figure 4.5.: Temporal evolution of a Gaussian defined in model gauss using our new theory.
We show εcr and fcr in the left panels and εa,+ and εa,− in the right panels. The
wings of the Gaussian are transported with the Alfvén velocity as indicated by
the coloured vertical lines in the εcr panel. These lines are initially placed at the
standard deviation of the initial Gaussian and moved outwards with velocity γcr3a

in both directions. We display the initial conditions as grey lines. Figure from
Thomas and Pfrommer (2018).

coefficients as:

1
3κ±

= χεa,±, (4.36)

using eq. (3.55). We use a small suite of parameter combinations listed in Tab. 4.1. We use
these models to test different aspects of CR transport by changing cred, χ, and α to emphasize
the dynamics of different terms in the transport equations. In general, these parameters are
chosen such that εa,±/εcr ∼ 10−6. This corresponds to the expected δB/B ∼ 10−3 assuming
pressure equilibrium between CRs and large scale magnetic fields.

Macroscopic transport In Fig. 4.5 we show evolution of the Gaussian model gauss.
The initially smooth Gaussian spreads such that an plateau develops. Inside this plateau the

bulk of CRs are transported with sub-alfvénic velocities, as can be inferred from the fcr panel
in Fig. 4.5. Therein fcr ∝ x holds such that ∂tεcr = const. which leads to an apparently coherent
decrease in CR energy density. As CRs are transported sub-alfvénically no Alfvén waves can
be driven by gyroresonant instability and only wave damping operates efficiently. The residual
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Figure 4.6.: x-t plot of the models box slow, box (both on the left-hand side) and gauss slow,
gauss (both on the right-hand side). We draw coloured characteristics associated
with the velocities of Alfvén waves (red) and light (green) and color-code εcr in the
background. The CR population is confined by the Alfvén velocity for each choice
of cred. If the reduced speed of light is lowered to 10 times the Alfvén velocity light-
like characteristics become visible. Figure from Thomas and Pfrommer (2018).

. 10−15 wave energy densities are a dynamical lower limit of the counteracting injection of
Alfvén wave energy by S inj and damping caused by acceleration of CR and nonlinear Landau
damping.

In the wings of the Gaussian, the gradient in εcr induces a small anisotropy by virtue of the
Eddington-term which perturbs the streaming CRs. This anisotropy triggers the gyroresonant
instability which decelerates CRs and transfers their energy into Alfvén waves. Hence, there is
a strongly counteracting process to the wave damping, which results in wave energy densities
of εa,± ∼ 10−6. These low energy densities scatter CRs on time scales . 10−4 (in code units)
such that scattering is efficient on the displayed time scales.

Characteristic speeds In Fig. 4.6 we show evolution of the Gaussian and box initial condi-
tions with different values of cred following the parameters gauss, gauss slow, box, box slow.
The box initial conditions provide a stringent test, as the transition between the CR population
and region outside is sharp. There is thus a strong gradient in εcr, which shifts the dynamics
towards that directly induced by the Eddington-term.

These simulations exemplify the applicability of the reduced-speed-of-light approximation.
In the cases of cred/3a = 10 the plots show multiple characteristics in εcr which can be asso-
ciated with the lightlike velocities ±cred/

√
3. Reducing the speed of light is accompanied by

a decrease in typical scattering time scales. Consider a parcel in which the characteristic re-
sides at a fixed time. This characteristic should amplify Alfvén waves. Since no wave energy
is present in the plateau of the CR distribution, these waves need to first grow and overcome
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Figure 4.7.: Impact of varying damping coefficients. Increasing the damping coefficient α in-
creases the diffusivity of CR transport. We display the initial conditions as grey
lines. Figure from Thomas and Pfrommer (2018).

the damping. Even if the waves were sufficiently strong, the associated scattering times would
be too slow and the characteristic would have already left the parcel. This leaves the features
unscattered and makes them visible as small perturbations of the plateau.

Nevertheless, the evolution of wings of the CR distribution is invariant under a reasonable
choice of cred. Even in the flawed case with cred = 10, the spatial extends of both distributions
grow with velocities ±γcr3a in both directions.

Varying diffusivity In Fig. 4.7 we investigate the impact of different damping coefficients
on the transport of CRs using the models low damp, int damp, and hig damp. We artificially
increase the injection rate S inj for presentation reasons. The presented results in εcr and fcr do
not depend on the particular choice of this rate. Merely the lower bound of εa,± is affected by
this value.

Successively increasing the damping coefficients results in an increasingly diffusive compo-
nent of the transport. CRs get less frequently scattered because the overall level of Alfvén wave
energy is lower due to the stronger damping. The waves are incapable of capturing the bulk of
CRs in their own frame. Hence, CRs can now stream with velocities that exceed the Alfvénic
one. This increases the spatial extent of the evolving gaussians. The diffusivity increases espe-
cially in the outer parts of the wings, since there is even less CR energy available to transfer it
into magnetic energy of the Alfvén waves, which in turn causes less scattering.

The choice of the damping coefficient has clear implications for the transport of CRs. It
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regulates the reservoir of Alfvén wave energy, the scattering time scales and hence the diffu-
sivity. Nevertheless, global features in the evolution of the CR distribution remain the same for
varying damping coefficients.
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5 Summary and Conclusion
In this work we derive a new macroscopic transport equation for CRs. Despite their low number
densities, these particles are important feedback agents in different astrophysical environments.
They can interact with the thermal gas and become dynamically important due to their large
kinetic energy and their interaction with electromagnetic fields. Improving our understanding
of CR transport enables us to better understand these astrophysical systems.

Jiang and Oh (2018) propose to map the CR transport equation on those of RHD. They
do not provide a consistent derivation and argue through analogy between both relativistic
fluids. Here, we extend their idea and derive our equations based on approximations of the CR-
version of the Fokker-Planck equation. In this process we consider momentum and pitch-angle
scattering of CRs by Alfvén waves. To overcome the emerging complexity of the Fokker-
Planck equation, we use the moment-method known from RHD and approximate the spectrum
of Alfvén wave energy by a simple powerlaw. The resulting macroscopic transport equations
contain the energy equation that was used previously in the limit of rapid scattering.

Our treatment of pitch-angle scattering and momentum diffusion leads to Galilean invariant
scattering terms in the limit O(ν̄32a/3

2). This invariance is a physical necessity, as the scattering
proceeds until the distribution isotropizes in the wave frame and is energy conserving in this
frame. Any non-invariant terms would not be able to capture this properly as CRs are tied to the
frame in which they evaluated. This result demonstrates that our derivation and, in particular,
the used approximations are reasonable.

The scattering of CRs is regulated by the strength of the ambient Alfvénic turbulence. The
energy contained in the associated waves can vary temporarily and spatially. In order to model
this correctly, we recall how Alfvén waves are transported macroscopically and account for
different processes affecting the energy contained in waves. Both, CRs and Alfvén waves
are tightly coupled through the gyroresonant instability. This inverse process of momentum
diffusion transfers energy between both agents of scattering. In our hydrodynamic limit, the
gain of Alfvén wave energy by this process is exactly compensated by the loss of CR energy
and vice versa, as required physically. Different damping mechanisms can transfer residual
Alfvén wave energy into the thermal gas and heat it. We review the damping mechanisms and
calculate corresponding hydrodynamic versions of Alfvén wave energy loss terms since this
heating is an important feedback channel in different astrophysical systems.

We test our theory using numerical simulations of idealized test cases. We show that standard
finite volume methods are sufficient to simulate CR streaming. Earlier attempts to do this that
use previous formulations of the CR energy equation need to use mathematical regularizations
and advanced numerical methods to solve the resulting nonlinear diffusion equation. Our results
show the expected transport behavior for the bulk of CRs: if there is a sufficiently steep gradient
in εcr, a small anisotropy is induced and Alfvén waves can grow and scatter CRs into their
frame. This leads to an effective transport of CRs with the Alfvén velocity. Using a small
parameter study, we show that a more diffusive propagation of CRs follows a increase in wave
damping and subsequently a decrease in scattering.

In a next step, we will investigate the emerging dynamics of our theory using full 3D-MHD
simulations. This will help us to asses its applicability and performance in actual astrophysical
systems.
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A Complete Calculation of Occurring In-
tegrals

A.1. µ-Integrals for the Fluid Equations

Here, we calculate all necessary µ integrals to derive the transport eqs. (3.8) and eq. (3.9) term-
by-term. As a reminder: we defined f = f0 + 3µ f1 in our Eddington approximation. With this
definition, only powers in µ appear in the transport equations. We multiply eq.(3.1) with 1 and
integrate over th intervall [−1, 1], which yields the first moment of the equation.

For the time derivative we have:

1
2

∫ 1

−1
dµ 1

∂ f
∂t

=
1
2

∫ 1

−1
dµ

(
∂ f0

∂t
+ 3µ

∂ f1

∂t

)
=

1
2

∫ 1

−1
dµ

∂ f0

∂t

=
∂ f0

∂t
. (A.1)

The moment of the advection term is:

1
2

∫ 1

−1
dµ (u + µ3b) ·∇ f =

1
2

∫ 1

−1
dµ (u + µ3b) ·∇ f0 + 3(µu + µ2

3b) ·∇ f1

=
1
2

∫ 1

−1
dµu ·∇ f0 + 3µ2

3b ·∇ f1

= u ·∇ f0 + 3b ·∇ f1. (A.2)

We split the pseudoforces in two separate terms depending on the particular derivatives of f .
We obtain for the 1-moment of terms containing ∂p f :

1
2
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∂ f
∂p

[
1 − 3µ2

2
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1 − µ2

2
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]
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1
2
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[
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p
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1
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p
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1
3
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∂p
, (A.3)
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while for that containing ∂µ f we obtain:

1
2

∫ 1

−1
dµ 1

[
v∇ · b + µ∇ · u − 3µ(b · ∇u · u)

] 1 − µ2

2
∂ f
∂µ

=
1
2

∫ 1

−1
dµ 3

[
v∇ · b + µ∇ · u − 3µ(b · ∇u · b)

] 1 − µ2

2
f1

= 3(∇ · b) f1. (A.4)

Adding those 1-moments yields eq. (3.8).
Next, we calculate the µ-moment. To this end, we multiply eq. (3.1) by µ and apply integrate

over pitch-angle. The term that contains the time derivate evaluates to:

1
2

∫ 1

−1
dµ µ

∂ f
∂t

=
1
2

∫ 1

−1
dµ

(
µ
∂ f0

∂t
+ 3µ2∂ f1

∂t

)
=

1
2

∫ 1

−1
dµ 3µ2∂ f1

∂t

=
∂ f1

∂t
. (A.5)

Taking the µ-moment of the advection term yields:

1
2

∫ 1

−1
dµ µ(u + µ3b) ·∇ f =

1
2

∫ 1

−1
dµ (µu + µ2

3b) ·∇ f0 + 3(µ2u + µ3
3b) ·∇ f1

=
1
2

∫ 1

−1
dµ µ2

3b ·∇ f0 + 3µ2u ·∇ f1

=
3

3
b ·∇ f0 + u ·∇ f1. (A.6)

For the terms describing pseudoforces we have:

1
2

∫ 1

−1
dµ µp

∂ f
∂p

[
1 − 3µ2

2
(b ·∇u · b) −

1 − µ2

2
∇ · u

]
=

1
2

∫ 1

−1
dµ µ

[
1 − 3µ2

2
(b ·∇u · b) −

1 − µ2

2
∇ · u

]
p
∂ f0

∂p

+
1
2

∫ 1

−1
dµ 3µ2

[
1 − 3µ2

2
(b ·∇u · b) −

1 − µ2

2
∇ · u

]
p
∂ f1

∂p

=

[
−

2
5

(b ·∇u · b) −
1
5
∇ · u

]
p
∂ f1

∂p
(A.7)

and
1
2

∫ 1

−1
dµ µ

[
v∇ · b + µ∇ · u − 3µ(b · ∇u · b)

] 1 − µ2

2
∂ f
∂µ

=
1
2

∫ 1

−1
dµ 3

[
v∇ · b + µ∇ · u − 3µ(b · ∇u · b)

]
µ

1 − µ2

2
f1

=

[
1
5
∇ · u − 3

5
(b · ∇u · b)

]
f1. (A.8)

Again, combining the µ-moments results in eq. (3.9).
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A.2. Integrals of the Scattering Operator

A.2.1. µ-Integrals of the scattering coefficient

For the grey-approximation of the scattering coefficient in eq. (3.47) we found ν±(µ) ∝ |µ ∓ 3a/3|.
In order to calculate the macroscopic version of the scattering terms, the first three µ-moments
of this scattering coefficient are required. We first calculate those moments for the modulus
functions |µ ∓ 3a/3| to simplify subsequent calculations.

We start with the two zeroth µ-moments. For the interaction with co-propagating waves, we
will need:∫ 1

−1
dµ (1 − µ2)

∣∣∣∣∣µ − 3a3
∣∣∣∣∣ =

∫ 3a/3

−1
dµ (1 − µ2)

(
−µ +

3a

3

)
+

∫ 1

3a/3

dµ (1 − µ2)
(
µ −
3a

3

)
=

1
12

(
3 −
3a

3

) (
1 +
3a

3

)3
+

1
12

(
3 +
3a

3

) (
1 −
3a

3

)3

=
1

12

(
6 + 12

32a

32
− 2
34a

34

)
=

1
2

+
32a

32
+ o

(
32a

32

)
, (A.9)

while the corresponding moment of the counter-propagating wave results by symmetry (or
direct calculation): ∫ 1

−1
dµ (1 − µ2)

∣∣∣∣∣µ +
3a

3

∣∣∣∣∣ =
1
2

+
32a

32
+ o

(
32a

32

)
. (A.10)

We now calculate the next two µ-moments. In the subsequent calculations of scattering terms
or growth rates only their order in 3a/3 is of interest while their exact value is not needed.
Nevertheless, we will show the full calculations and results for completeness. For the first
µ-moment, we need the following integral:∫ 1

−1
dµ (1 − µ2)µ

∣∣∣∣∣µ − 3a3
∣∣∣∣∣ =

∫ 3a/3

−1
dµ (1 − µ2)µ

(
−µ +

3a

3

)
+

∫ 1

3a/3

dµ (1 − µ2)µ
(
µ −
3a

3

)
= −

1
60

(
1 +
3a

3

)3
(
8 − 9

3a

3
+ 3
32a

32

)
−

1
60

(
1 −
3a

3

)3
(
8 + 9

3a

3
+ 3
32a

32

)
=

1
60

(
−30
3a

3
+ 20
33a

33
− 6
35a

35

)
= −

1
2
3a

3
+ o

(
32a

32

)
, (A.11)

and its symmetric counterpart:∫ 1

−1
dµ (1 − µ2)µ

∣∣∣∣∣µ +
3a

3

∣∣∣∣∣ = +
1
2
3a

3
+ o

(
32a

32

)
. (A.12)
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Lastly, the µ2-moment contains the following integral:∫ 1

−1
dµ (1 − µ2)µ2

∣∣∣∣∣µ − 3a3
∣∣∣∣∣ =

∫ 3a/3

−1
dµ (1 − µ2)µ2

(
−µ +

3a

3

)
+

∫ 1

3a/3

dµ (1 − µ2)µ2
(
µ −
3a

3

)
= −

1
60

(
5 + 8

3a

3
+ 5
34a

34
− 2
36a

36

)
−

1
60

(
5 − 8

3a

3
+ 5
34a

34
− 2
36a

36

)
=

1
60

(
10 + 10

34a

34
+ 4
36a

36

)
=

1
6

+ o
(
32a

32

)
. (A.13)

The backward Doppler-shifted integral is given by symmetry:∫ 1

−1
dµ (1 − µ2)µ2

∣∣∣∣∣µ +
3a

3

∣∣∣∣∣ =
1
6

+ o
(
32a

32

)
. (A.14)

A.2.2. Pitch-Angle Integrals for εcr

We calculate phase-space moments of the scattering terms in eq. (3.18) by starting with their
1-moment in µ. We postpone the energy moments to the next subsection. Adding the results
and calculating the energy-moments yields the right hand side of eq. (3.52).

We frequently use the definitions in eqs. (3.47) and (3.48) and calculate the scattering terms
separately for Dµµ, Dµp and Dpp, where we further split the terms containing Dµp in separate
integrals:

∂ f
∂t

∣∣∣∣∣
scatt

=
∂ f
∂t

∣∣∣∣∣
scatt,Dµµ

+
∂ f
∂t

∣∣∣∣∣
scatt,Dµp

+
∂ f
∂t

∣∣∣∣∣
scatt,Dpµ

+
∂ f
∂t

∣∣∣∣∣
scatt,Dpp

, (A.15)

where the subscript denotes the moment of the corresponding diffusion term in eq. (3.18). We
further remind the reader that f0 is of order O(1) whereas f1 exhibits order O(3a/3).

The µµ-integral reads∫ 1

−1
dµ

∂ f
∂t

∣∣∣∣∣
scatt,Dµµ

=

∫ 1

−1
dµ

∂

∂µ

{
p
3a

3

1 − µ2

2

[(
1 − µ

3a

3

)2
ν+ +

(
1 + µ

3a

3

)2
ν−

]
∂ f
∂µ

}
= 0, (A.16)

while the µp integral∫ 1

−1
dµ

∂ f
∂t

∣∣∣∣∣
scatt,Dµp

=

∫ 1

−1
dµ

∂

∂µ

{
p
3a

3

1 − µ2

2

[(
1 − µ

3a

3

)
ν+ −

(
1 + µ

3a

3

)
ν−

]
∂ f
∂p

}
= 0, (A.17)

vanishes by virtue of the fundamental theorem of calculus. The first non-vanishing 1-moment
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derives from the second Dµp term. We calculate:

∫ 1

−1
dµ

∂ f
∂t

∣∣∣∣∣
scatt,Dpµ

=

∫ 1

−1
dµ

1
p2

∂

∂p

{
p2 p
3a

3

1 − µ2

2

[(
1 − µ

3a

3

)
ν+ −

(
1 + µ

3a

3

)
ν−

]
∂ f
∂µ

}
=

1
p2

∂

∂p
p2 p
3a

3

∫ 1

−1
dµ

1 − µ2

2

[(
1 − µ

3a

3

)
ν+ −

(
1 + µ

3a

3

)
ν−

]
∂ f
∂µ

=
1
p2

∂

∂p
p2 p
3a

3

3
2

∫ 1

−1
dµ

(
1 − µ2

) [(
1 − µ

3a

3

)
ν+ −

(
1 + µ

3a

3

)
ν−

]
f1

= 2
1
p2

∂

∂p
p2 p
3a

3

3
4

∫ 1

−1
dµ

(
1 − µ2

) [(
1 − µ

3a

3

)
ν+ −

(
1 + µ

3a

3

)
ν−

]
f1

= 2
1
p2

∂

∂p
p2 p
3a

3

3
4

∫ 1

−1
dµ

(
1 − µ2

) [
(ν+ − ν−) − µ

3a

3
(ν+ + ν−)

]
f1,

(A.18)

where the second term in the brackets is of order 33a/3
3 and thus vanishes. Finally, the result for

this moment is:

= 2
1
p2

∂

∂p
p2 p
3a

3

3
4

∫ 1

−1
dµ

(
1 − µ2

)
(ν+ − ν−) f1

= 2
1
p2

∂

∂p
p2 p
3a

3

3
4
πΩ′

1/2
εB

∫ 1

−1
dµ

(
1 − µ2

) (
εa,+

∣∣∣∣∣µ − 3a3
∣∣∣∣∣ − εa,−

∣∣∣∣∣µ +
3a

3

∣∣∣∣∣) f1

= 2
1
p2

∂

∂p
p2 p
3a

3

3
4
πΩ′

1/2
εB

[
εa,+

(
1
2

+
32a

32

)
− εa,−

(
1
2

+
32a

32

)]
f1

= 2
1
p2

∂

∂p
p2 p
3a

3
(ν̄+ − ν̄−) f1. (A.19)

The last term contributing to the εcr equation is a Dpp term. We calculate its moment to:

∫ 1

−1
dµ

∂ f
∂t

∣∣∣∣∣
scatt,Dpp

=

∫ 1

−1
dµ

1
p2

∂

∂p

{
p2 p2 3

2
a

32

1 − µ2

2
(ν+ + ν−)

∂ f
∂p

}
=

∫ 1

−1
dµ

1
p2

∂

∂p

{
p2 p2 3

2
a

32

1 − µ2

2
(ν+ + ν−)

∂ ( f0 + 3 f1)
∂p

}
(A.20)
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since f1 is of order 3a/3, we can neglect its contribution to this integral.

=

∫ 1

−1
dµ

1
p2

∂

∂p

{
p2 p2 3

2
a

32

1 − µ2

2
(ν+ + ν−)

∂ f0

∂p

}
=

1
p2

∂

∂p
p2 p2 3

2
a

32

∫ 1

−1
dµ

1 − µ2

2
(ν+ + ν−)

∂ f0

∂p

=
2
3

1
p2

∂

∂p
p2 p2 3

2
a

32

3
4

∫ 1

−1
dµ

(
1 − µ2

)
(ν+ + ν−)

∂ f0

∂p

=
2
3

1
p2

∂

∂p
p2 p2 3

2
a

32

3
4
πΩ′

1/2
εB

∫ 1

−1
dµ

(
1 − µ2

) (
εa,+

∣∣∣∣∣µ − 3a3
∣∣∣∣∣ + εa,−

∣∣∣∣∣µ +
3a

3

∣∣∣∣∣) ∂ f0

∂p

=
2
3

1
p2

∂

∂p
p2 p2 3

2
a

32

3
4
πΩ′

1/2
εB

[
εa,+

(
1
2

+
32a

32

)
+ εa,−

(
1
2

+
32a

32

)]
∂ f0

∂p

=
2
3

1
p2

∂

∂p
p2 p2 3

2
a

32
(ν̄+ + ν̄−)

∂ f0

∂p
. (A.21)

A.2.3. Momentum Integrals for εcr

To finalize the phase-space moments for the scattering terms in the energy equation, we need
to apply the definition

∫
d3 pT (p) =

∫ ∞

0
dp 2πp2T (p)

∫ 1

−1
dµ (A.22)

to every term in eq. (A.15). Because we have already calculated the µ integral, we simply insert
the derived results from the the last subsection. Starting with the two trivial moments (using
eq. (A.16))

∂εcr

∂t

∣∣∣∣∣
scatt,Dµµ

=

∫ ∞

0
dp 2πp2T (p)

∫ 1

−1
dµ

∂ f
∂t

∣∣∣∣∣
scatt,Dµµ

= 0, (A.23)

and, using eq. (A.17);

∂εcr

∂t

∣∣∣∣∣
scatt,Dµp

=

∫ ∞

0
dp 2πp2T (p)

∫ 1

−1
dµ

∂ f
∂t

∣∣∣∣∣
scatt,Dµp

= 0, (A.24)
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we calculate the energy moment of the second Dµp term based on eq. (A.19) to:

∂εcr

∂t

∣∣∣∣∣
scatt,Dpµ

=

∫ ∞

0
dp 2πp2T (p)

∫ 1

−1
dµ

∂ f
∂t

∣∣∣∣∣
scatt,Dpµ

=

∫ ∞

0
dp 4πT (p)

∂

∂p
p2 p
3a

3
(ν̄+ − ν̄−) f1

= −

∫ ∞

0
dp 4π3p2 p

3a

3
(ν̄+ − ν̄−) f1

= −3
∫ ∞

0
dp 4πp2 3p

3
3a

3
(ν̄+ − ν̄−) f1

= −3
3a

c2 (ν̄+ − ν̄−)
∫ ∞

0
dp 4πp2 3p

3
3 f1

= −3
3a

c2 (ν̄+ − ν̄−)Kcr. (A.25)

For the contribution of momentum diffusion to the energy balance, we obtain:

∂εcr

∂t

∣∣∣∣∣
scatt,Dpp

=

∫ ∞

0
dp 2πp2T (p)

∫ 1

−1
dµ

∂ f
∂t

∣∣∣∣∣
scatt,Dpp

=

∫ ∞

0
dp 2πp2T (p)

2
3

1
p2

∂

∂p
p2 p2 3

2
a

32
(ν̄+ + ν̄−)

∂ f0

∂p

=

∫ ∞

0
dp

4
3
πT (p)

∂

∂p
p4 3

2
a

32
(ν̄+ + ν̄−)

∂ f0

∂p

= −

∫ ∞

0
dp

4
3
π3p4 3

2
a

32
(ν̄+ + ν̄−)

∂ f0

∂p

= −
32a

c2
(ν̄+ + ν̄−)

∫ ∞

0
dp

4
3
π3p4∂ f0

∂p

= 4
32a

c2
(ν̄+ + ν̄−)

∫ ∞

0
dp

4
3
π3p3 f0

= 4
32a

c2
(ν̄+ + ν̄−)

∫ ∞

0
dp 4πp2 pv

3
f0

= 4
32a

c2
(ν̄+ + ν̄−) Pcr, (A.26)

using eq. (A.21).
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A.2.4. Pitch-Angle Integrals for fcr

We apply the same procedure for calculating the µ and energy moments of eq. (3.18). This
results in their contribution to eq. (3.54). For the µ-moments, we multiply each scattering term
in eq. (A.15) by µ and integrate over µ for each term. Starting with the µµ pitch-angle scattering
term, we have:∫ 1

−1
dµ µ

∂ f
∂t

∣∣∣∣∣
scatt,Dµµ

=

∫ 1

−1
dµ µ

∂

∂µ

{
1 − µ2

2

[(
1 − µ

3a

3

)2
ν+ +

(
1 + µ

3a

3

)2
ν−

]
∂ f
∂µ

}
= −

∫ 1

−1
dµ

{
1 − µ2

2

[(
1 − µ

3a

3

)2
ν+ +

(
1 + µ

3a

3

)2
ν−

]
∂ f
∂µ

}
= −

3
2

∫ 1

−1
dµ

(
1 − µ2

) [(
1 − µ

3a

3

)2
ν+ +

(
1 + µ

3a

3

)2
ν−

]
f1.

Directly expanding the quadratic terms results in (1 − µ2), (1 − µ2)µ and (1 − µ2)µ2 moments of
the scattering coefficient. Since the (1−µ2)µ moment is of order 3a/3, we can neglect it because
it is multiplied with f1 and a factor from the binomial formula, both of order 3a/3. The same
is true for the term (1 − µ2)µ2 because it is accompanied by a factor 32a/3

2 resulting from the
quadratic expansion. We obtain:

= −
3
2

∫ 1

−1
dµ

(
1 − µ2

)
(ν+ + ν−) f1

= −
3
2
πΩ′

1/2
εB

∫ 1

−1
dµ

(
1 − µ2

) (
εa,+

∣∣∣∣∣µ − 3a3
∣∣∣∣∣ + εa,−

∣∣∣∣∣µ +
3a

3

∣∣∣∣∣) f1

= −
3
2
πΩ′

1/2
εB

[
εa,+

(
1
2

+
32a

32

)
+ εa,−

(
1
2

+
32a

32

)]
f1

= −2(ν̄+ + ν̄−) f1. (A.27)

The next moment results from a Dpµ-term, which we evaluate to:∫ 1

−1
dµ µ

∂ f
∂t

∣∣∣∣∣
scatt,Dpµ

=

∫ 1

−1
dµ µ

1
p2

∂

∂p

{
p2 p
3a

3

1 − µ2

2

[(
1 − µ

3a

3

)
ν+ −

(
1 + µ

3a

3

)
ν−

]
∂ f
∂µ

}
=

1
p2

∂

∂p
p2 p
3a

3

∫ 1

−1
dµ µ

{
1 − µ2

2

[(
1 − µ

3a

3

)
ν+ −

(
1 + µ

3a

3

)
ν−

]
∂ f
∂µ

}
=

3
p2

∂

∂p
p2 p
3a

3

∫ 1

−1
dµ µ

{
1 − µ2

2

[(
1 − µ

3a

3

)
ν+ −

(
1 + µ

3a

3

)
ν−

]
f1

}
.

No term will remain from this integral because: the terms proportional to 1 in the parenthesis
is a (1 − µ2)µ moment of the scattering coefficient and thus of order 3a/3, which is entirely of
order 33a/3

3. This derives from with the 3a/3 factor in front of the integral and the fact that f1 is
of order 3a/3. The remaing term in the parenthesis is directly proportional to 3a/3 and vanishes
by the same argument as before. We thus have:∫ 1

−1
dµ µ

∂ f
∂t

∣∣∣∣∣
scatt,Dpµ

= 0. (A.28)
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We calculate the other Dpµ term by starting with the term:∫ 1

−1
dµ µ

∂ f
∂t

∣∣∣∣∣
scatt,Dµp

=

∫ 1

−1
dµ µ

∂

∂µ

{
p
3a

3

1 − µ2

2

[(
1 − µ

3a

3

)
ν+ −

(
1 + µ

3a

3

)
ν−

]
∂ f
∂p

}
= −

∫ 1

−1
dµ

{
p
3a

3

1 − µ2

2

[(
1 − µ

3a

3

)
ν+ −

(
1 + µ

3a

3

)
ν−

]
∂ f
∂p

}
= −p

3a

3

1
2

∫ 1

−1
dµ

(
1 − µ2

) [(
1 − µ

3a

3

)
ν+ −

(
1 + µ

3a

3

)
ν−

]
∂ f
∂p

= −p
3a

3

1
2

∫ 1

−1
dµ

(
1 − µ2

) [(
1 − µ

3a

3

)
ν+ −

(
1 + µ

3a

3

)
ν−

]
∂

∂p
( f0 + 3 f1µ)

Next, we check which terms will remain from this integral:
• f0 combined with the 1-term from the parenthesis results in a (1 − µ2) moment of the

scattering coefficient and is thus of first order and remains,
• f0 combined with the µ-term from the parenthesis results in a (1 − µ2)µ moment of the

scattering coefficient and is thus of third order and vanishes,
• f1 combined with the 1-term from the parenthesis results in a (1 − µ2)µ moment of the

scattering coefficient and is thus of third order and vanishes,
• f1 combined with the µ-term from the parenthesis results in a (1 − µ2)µ2 moment of the

scattering coefficient and is thus of third order and vanishes.
Removing the vanishing terms from the integral yields:

= −p
3a

3

1
2
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dµ

(
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)
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32
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(A.29)

The momentum-scattering term yields:∫ 1

−1
dµ µ

∂ f
∂t

∣∣∣∣∣
scatt,Dpp

=

∫ 1

−1
dµ µ

1
p2

∂
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[
p2 p2 3

2
a

32
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2
(ν+ + ν−)

∂ f
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1
p2

∂

∂p
p2 p2 3

2
a

32

∫ 1

−1
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1 − µ2

2
(ν+ + ν−)

∂ f
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=
1
p2

∂

∂p
p2 p2 3

2
a

32

∫ 1

−1
dµ µ

1 − µ2

2
(ν+ + ν−)

∂

∂p
( f0 + 3 f1µ)

The contribution from the f0 term vanishes because it results in a (1 − µ2)µ moment of the
scattering coefficient which adds an additional 3a/3 to the factor 32a/3

2 in front of the integral
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and is thus of third order and negligible. The terms containing f1 also vanish, as f1 is of order
3a/3 and is of third order because of the same factor as before. We finally obtain:

∫ 1

−1
dµ µ

∂ f
∂t

∣∣∣∣∣
scatt,Dpµ

= 0 (A.30)

A.2.5. Momentum Integrals for fcr

Equipped with the first pitch-angle moments of all diffusion coefficients, we are now able to
calculate the corresponding momentum moments. We again write:

∂ fcr

∂t

∣∣∣∣∣
scatt

=
∂ fcr

∂t

∣∣∣∣∣
scatt,Dµµ

+
∂ fcr
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∣∣∣∣∣
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+
∂ fcr

∂t

∣∣∣∣∣
scatt,Dpµ

+
∂ fcr

∂t

∣∣∣∣∣
scatt,Dpp

. (A.31)

Starting with the pitch-angle diffusion and using eq. (A.27), we have:

∂ fcr

∂t

∣∣∣∣∣
scatt,Dµµ

=

∫ ∞

0
dp 2πp2T (p)3

∫ 1

−1
dµ µ
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0
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= −(ν̄+ + ν̄−)
∫ ∞

0
dp 4πp2T (p)3 f1

= −(ν̄+ + ν̄−) fcr. (A.32)

The pµ-diffusion contribution to the evolution of the flux vanishes by means of eq. (A.28):

∂ fcr

∂t

∣∣∣∣∣
scatt,Dpµ

=

∫ ∞

0
dp 2πp2T (p)3

∫ 1

−1
dµ µ
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= 0. (A.33)

The next and non-vanishing term results from eq. (A.29) and is given by:
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(A.34)
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The last remaining term is the contribution from the momentum diffusion, which vanishes by
virtue of eq. (A.30):

∂ fcr

∂t

∣∣∣∣∣
scatt,Dpp

=

∫ ∞

0
dp 2πp2T (p)3

∫ 1

−1
dµ µ

∂ f
∂t

∣∣∣∣∣
scatt,Dpp

= 0. (A.35)

A.3. Growth Rate of Alfvén Waves

Here, we calculate the energy density growth of the Alfvén waves. We adopt the same gen-
eral methods to approximate the complete equation to order 32a/3

2, as used before during the
calculation of the scattering terms for the CRs transport equation. We start with:

∫ ∞

0
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We calculate this integral by splitting it into contributions from both derivatives of f . First, the
integral containing ∂µ f evaluates to:

±3a
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d3 p
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The integral containing the p-derivative of f reads:
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Again, we can nelgect the contribution of f1 because it yields a third order contribution to this
integral. We proceed with:
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εB
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Combing both contributions results in a final wave energy density growth due to the interaction
with CRs: ∫ ∞

0
dk Γgri,±(k)R±(k) = ±

3aν̄±
c2 fcr −

32a
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